The effective and economical removal of phosphates from aqueous solution, mostly applied in waste water treatment, is one of the significant issues globally. Removal of phosphates ions in aqueous solution was analysed...The effective and economical removal of phosphates from aqueous solution, mostly applied in waste water treatment, is one of the significant issues globally. Removal of phosphates ions in aqueous solution was analysed by chitosan blended with cellulose acetate, and iron oxide loaded chitosan-cellulose acetate adsorbents. The adsorbents were made in the form of beads. Batch experiments were performed to investigate the performance of the beads under various conditions on phosphate adsorption. Contact time, effect of initial phosphate concentration, adsorbent dosage, pH and temperature were investigated. Zeta potential measurements were also undertaken. The results showed that the adsorption process was highly pH dependent. The adsorption kinetics data were modelled with the application of adsorption reaction models and adsorption diffusion models. The results revealed that the pseudo 2nd order model was the best fitting in all cases. The experimental data were tested with Langmuir and Freundlich isotherms. The equilibrium data were well fitted to the Langmuir isotherm model with a maximum adsorption capacity of 958 μg/g. The Freundlich isotherm model also had a close fit with a maximum adsorption of 233 μg/g, which was very close to the experimental maximum adsorption. The mechanism of adsorption followed two stages in which the first one was fast followed by a slower gradual stage. SEM images showed that the adsorbent was macroporous. Fourier Transform Infrared Red (FT-IR) Spectroscopy, X-ray Diffraction Spectroscopy (XRD) and X-ray photoelectron Spectroscopy (XPS) showed that the phosphate adsorption on the HFO-CS/CA beads was due to surface complexes, and mainly involved Nitrogen atoms. HFO loading also increased surface area.展开更多
In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an impo...In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices.展开更多
L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati...Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels.展开更多
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer...The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.展开更多
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,...Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.展开更多
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke...The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.展开更多
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between...The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.展开更多
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ...Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.展开更多
This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions....This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.It highlights the availability of the corresponding biomass in Malaysia and in line with global studies,the chemical compositions,as well as a brief description of current technologies for converting biomass of oil palm into value added products specifically cellulose.Steps to achieve maximum utilization of biomass from oil palm industry for cellulose production and prospective source for nitrocellulose-based propellant are also proposed.The methodology section outlines the pretreatment of lignocellulosic fibres,cellulose extraction,and nitrocellulose production processes.Overall,the review underscores the prospective of palm oil biomass as a sustainable cellulose source for propellant manufacturing,while acknowledging the need for further research and advancements in the field.展开更多
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge...Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.展开更多
Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challen...Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.展开更多
Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose(HEC)polymer surfactant(DA(EO)5GE-g-HEC)was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as ...Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose(HEC)polymer surfactant(DA(EO)5GE-g-HEC)was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks.Dehydroabietyl polyethylene glycol glycidyl ether(DA(EO)5GE)was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether(Rosin derivative:DA(EO)5H)and epichlorohydrin.The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA.According to the formula,when m(HEC)/m(DA(EO)2GE)was 1:1~1:5,the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43%to 38.33%.The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied.The results showed that with the increase in grafting rate,the critical micellar concentration(CMC)in aqueous solution changed from 1.28 to 0.96 g/L.The results of the thermogravimetric analysis showed that the temperature range of the main stage of mass loss of DA(EO)5GE-g-HEC was 310°C~410°C,and the thermal decomposition processes of the samples with five mass ratios were similar.An oil in water emulsion was prepared by choosing cyclohexane as the oil phase and DA(EO)5GE-g-HEC as the emulsifier.The effect of DA(EO)5GE-g-HEC mass fraction on emulsion particle size and stability was analyzed.The results suggested that when the oil-water ratio was 8:2 with 0.4%emulsifier,the emulsion droplets were the smallest in terms of particle size and were the most stable.The rheological test results showed that the apparent viscosity decreased with the increase in shear rate and showed a typical elastic gel phenomenon.展开更多
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with...Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles.展开更多
In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosenso...In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.展开更多
Microcrystalline cellulose(MCC)is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity.When implemented in other polymers,high crystallinit...Microcrystalline cellulose(MCC)is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity.When implemented in other polymers,high crystallinity correlates with greater strength and stiffnes,but it can reduce the water-holding capacity.The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity,both of which have significance as properties of hydrogel filler.The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid(HCl)and the appropriate hydrolysis time as a filler for film hydrogel.MCC was produced by hydrolyzing cellulose of oil palm empty fruit bunches(OPEFB)with the HCl solution at varied concentrations and periods.The results show that the longer hydrolysis times and higher HCl concentrations increase crystallinity and density while lowering yield and water absorption.The extensive acid hydrolysis reduces the amorphous area significantly,allowing the depolymerization to occur and extend the crystalline area.The morphological properties of the MCC,which are smaller but compact,indicate the presence of disintegrating and diminishing structures.A 2.5 N HCl concentration and a 45-min hydrolysis time succeed in sufficient crystallinity as well as maintaining good water absorption capacity.The treatment produced MCC with absorption capacity of 4.03±0.26 g/g,swelling capacity of 5.03±0.26 g/g,loss on drying of 1.44%±0.36,bulk and tapped density of 0.27±0.031 g/cm^(3) and 0.3±0.006 g/cm^(3),respectively,with a crystallinity index of 88.89%±4.76 and a crystallite size of 4.23±0.70 nm.The MCC generated could potentially be utilized as a hydrogel film filler,since a given proportion will be able to maintain the strength of the hydrogel,not readily dissolve but absorb water significantly.展开更多
The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NF...The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.展开更多
Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were...Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were;NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm−1, 1604 cm−1, 1239 cm−1, and 1734 cm−1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction.展开更多
Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce...Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass.展开更多
The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally...The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally friendly. This study investigated Typha angustifolia (Typha sp.) as a potential new raw material for extracting cellulose nanocrystals (CNCs) for application in wastewater treatment composites. Alkaline treatments and bleaching were used to remove cellulose from the stem fibres. The CNCs were then isolated from the recovered cellulose using acid hydrolysis. The study showed a few distinct functional groups (O-H, -C-H, =C-H and C-O, and C-O-C) in the Fourier Transform Infrared (FTIR) spectra. A scanning electron microscope (SEM) revealed the smooth surface of CPC and CNCs, which resulted from removing lignin and hemicellulose from powdered Typha angustifolia. Based on the crystalline index, the powdered Typha angustifolia, CPC, and CNCs were 42.86%, 66.94% and 77.41%. The loss of the amorphous section of the Typha sp. fibre resulted in a decrease in particle size. It may be inferred from the features of a Typha sp. CNC that CNCs may be employed as reinforcement in composites for wastewater treatment.展开更多
文摘The effective and economical removal of phosphates from aqueous solution, mostly applied in waste water treatment, is one of the significant issues globally. Removal of phosphates ions in aqueous solution was analysed by chitosan blended with cellulose acetate, and iron oxide loaded chitosan-cellulose acetate adsorbents. The adsorbents were made in the form of beads. Batch experiments were performed to investigate the performance of the beads under various conditions on phosphate adsorption. Contact time, effect of initial phosphate concentration, adsorbent dosage, pH and temperature were investigated. Zeta potential measurements were also undertaken. The results showed that the adsorption process was highly pH dependent. The adsorption kinetics data were modelled with the application of adsorption reaction models and adsorption diffusion models. The results revealed that the pseudo 2nd order model was the best fitting in all cases. The experimental data were tested with Langmuir and Freundlich isotherms. The equilibrium data were well fitted to the Langmuir isotherm model with a maximum adsorption capacity of 958 μg/g. The Freundlich isotherm model also had a close fit with a maximum adsorption of 233 μg/g, which was very close to the experimental maximum adsorption. The mechanism of adsorption followed two stages in which the first one was fast followed by a slower gradual stage. SEM images showed that the adsorbent was macroporous. Fourier Transform Infrared Red (FT-IR) Spectroscopy, X-ray Diffraction Spectroscopy (XRD) and X-ray photoelectron Spectroscopy (XPS) showed that the phosphate adsorption on the HFO-CS/CA beads was due to surface complexes, and mainly involved Nitrogen atoms. HFO loading also increased surface area.
基金supported by the fund of the National Natural Science Foundation of China(22078184,22171170)the China Postdoctoral Science Foundation(2019M653853XB)+1 种基金the Natural Science Advance Research Foundation of Shaanxi University of Science and Technology(2018QNBJ-03)Major Scientific and Technological Innovation Projects in Shandong Province(2019TSLH0316)
文摘In recent years,paper-based functional materials have received extensive attention in the field of energy storage due to their advantages of rich and adjustable porous network structure and good flexibility.As an important energy storage device,paper-based supercapacitors have important application prospects in many fields and have also received extensive attention from researchers in recent years.At present,researchers have modified and regulated paper-based materials by different means such as structural design and material composition to enhance their electrochemical storage capacity.The development of paper-based supercapacitors provides an important direction for the development of green and sustainable energy.Therefore,it is of great significance to summarize the relevant work of paper-based supercapacitors for their rapid development and application.In this review,the recent research progress of paper-based supercapacitors based on cellulose was summarized in terms of various cellulose-based composites,preparation skills,and electrochemical performance.Finally,some opinions on the problems in the development of this field and the future development trend were proposed.It is hoped that this review can provide valuable references and ideas for the rapid development of paper-based energy storage devices.
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
基金supported by the National Natural Science Foundation of China(51976112,52206264)special Project Fund of“Taishan Scholar”of Shandong Province(tsqn202103066)Natural Science Foundation of Shandong Province(ZR2022ME109)。
文摘Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels.
基金the financial support from the National Natural Science Foundation of China(22109072)the Natural Science Foundation of Jiangsu Province(BK20210349)+1 种基金the Fundamental Research Funds for the Central Universities(30922010304)the Open Fund of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials(2022KFJJ06)。
文摘The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.
基金funding from the Natural Science Foundation of China(22278150,22075086,22138005,and 22141001)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010980,2023A1515010046)the Fundamental Research Funds for the Central Universities(2022ZYGXZR101).
文摘Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments.
基金financially supported by the National Key R&D Program of China(No.2021YFC2101604)National Natural Science Foundation of China(No.22278339,21978248)Fujian Provincial Key Science and Technology Program of China(No.2022YZ037013)。
文摘The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.
基金supported by the Nanfan Special Project of Chinese Academy of Agricultural Sciences (Grant No. ZDXM2315)the National Natural Science Foundation of China (Grant Nos. 32372125, 31861143006, and 32188102)+2 种基金Special Support Program of Chinese Academy of Agricultural Sciences (Grant NO. NKYCLJ-C-2021-015)Specific Research Fund of the Innovation Platform for Academicians of Hainan Province2023 College Student Innovation and Entrepreneurship Project of Jiangxi Agricultural University, China (Grant No. S202310410095)
文摘The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.
基金supported by the National Natural Science Foundation of China(No.52173292)the National Key Research and Development Project of China(No.2020YFC1910303)the Youth Innovation Promotion Association CAS(No.2018040).
文摘Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.
基金Financial support from Universiti Pertahanan Nasional Malaysia,Malaysia for Tabung Amanah PPPI (Defence Research Institute,UPNM)grant-A0014 (UPNM/2023/GPPP/SG/2)funded by Universiti Pertahanan Nasional Malaysia (UPNM),situated in Malaysia+1 种基金This financial backing was made possible through the"Tabung Amanah PPPI"grant,which is affiliated with UPNM’s Defence Research Institutethe grant is identifiable by its unique reference number,"A0014 (UPNM/2023/GPPP/SG/2)"。
文摘This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.It highlights the availability of the corresponding biomass in Malaysia and in line with global studies,the chemical compositions,as well as a brief description of current technologies for converting biomass of oil palm into value added products specifically cellulose.Steps to achieve maximum utilization of biomass from oil palm industry for cellulose production and prospective source for nitrocellulose-based propellant are also proposed.The methodology section outlines the pretreatment of lignocellulosic fibres,cellulose extraction,and nitrocellulose production processes.Overall,the review underscores the prospective of palm oil biomass as a sustainable cellulose source for propellant manufacturing,while acknowledging the need for further research and advancements in the field.
基金partly supported by the National Natural Science Foundation of China(51903113,51763014,and 52073133)the China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101)the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.
基金This work was financially supported by the National Natural Science Foundation of China(52173106 and 22375154).
文摘Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.
基金supported by the National Natural Science Foundation of China(31901257 and 32071706)School-Level Research Projects of the Yancheng Institute of Technology(xjr2019008).
文摘Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose(HEC)polymer surfactant(DA(EO)5GE-g-HEC)was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks.Dehydroabietyl polyethylene glycol glycidyl ether(DA(EO)5GE)was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether(Rosin derivative:DA(EO)5H)and epichlorohydrin.The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA.According to the formula,when m(HEC)/m(DA(EO)2GE)was 1:1~1:5,the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43%to 38.33%.The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied.The results showed that with the increase in grafting rate,the critical micellar concentration(CMC)in aqueous solution changed from 1.28 to 0.96 g/L.The results of the thermogravimetric analysis showed that the temperature range of the main stage of mass loss of DA(EO)5GE-g-HEC was 310°C~410°C,and the thermal decomposition processes of the samples with five mass ratios were similar.An oil in water emulsion was prepared by choosing cyclohexane as the oil phase and DA(EO)5GE-g-HEC as the emulsifier.The effect of DA(EO)5GE-g-HEC mass fraction on emulsion particle size and stability was analyzed.The results suggested that when the oil-water ratio was 8:2 with 0.4%emulsifier,the emulsion droplets were the smallest in terms of particle size and were the most stable.The rheological test results showed that the apparent viscosity decreased with the increase in shear rate and showed a typical elastic gel phenomenon.
基金Funded by National Natural Science Foundation of China(No.51472166)。
文摘Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles.
文摘In this study,green zinc oxide(ZnO)/polypyrrole(Ppy)/cellulose acetate(CA)film has been synthesized via solvent casting.This film was used as supporting material for glucose oxidase(GOx)to sensitize a glucose biosensor.ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant.ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole(Py)monomer using ferric chloride(FeCl3)as an oxidizing agent.The produced materials and the composite films were characterized using X-ray diffraction analysis(XRD),scanning electron microscope(SEM),Fourier transform infrared(FTIR)and thermogravimetric analysis(TGA).Glucose oxidase was successfully immobilized on the surface of the prepared film and then ZnO/Ppy/CA/GOx composite was sputtered with platinum electrode for the current determination at different initial concentrations of glucose.Current measurements proved the suitability and the high sensitivity of the constructed biosensor for the detection of glucose levels in different samples.The performance of the prepared biosensor has been assessed by measuring and comparing glucose concentrations up to 800 ppm.The results affirmed the reliability of the developed biosensor towards real samples which suggests the wide-scale application of the proposed biosensor.
基金the Universitas Gadjah Mada’s financial support for this research.This research was conducted using the Final Project Recognition Grant Universitas Gadjah Mada Indonesia Number of 5075/UN1.P.II/DitLit/PT.01.01/2023.
文摘Microcrystalline cellulose(MCC)is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity.When implemented in other polymers,high crystallinity correlates with greater strength and stiffnes,but it can reduce the water-holding capacity.The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity,both of which have significance as properties of hydrogel filler.The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid(HCl)and the appropriate hydrolysis time as a filler for film hydrogel.MCC was produced by hydrolyzing cellulose of oil palm empty fruit bunches(OPEFB)with the HCl solution at varied concentrations and periods.The results show that the longer hydrolysis times and higher HCl concentrations increase crystallinity and density while lowering yield and water absorption.The extensive acid hydrolysis reduces the amorphous area significantly,allowing the depolymerization to occur and extend the crystalline area.The morphological properties of the MCC,which are smaller but compact,indicate the presence of disintegrating and diminishing structures.A 2.5 N HCl concentration and a 45-min hydrolysis time succeed in sufficient crystallinity as well as maintaining good water absorption capacity.The treatment produced MCC with absorption capacity of 4.03±0.26 g/g,swelling capacity of 5.03±0.26 g/g,loss on drying of 1.44%±0.36,bulk and tapped density of 0.27±0.031 g/cm^(3) and 0.3±0.006 g/cm^(3),respectively,with a crystallinity index of 88.89%±4.76 and a crystallite size of 4.23±0.70 nm.The MCC generated could potentially be utilized as a hydrogel film filler,since a given proportion will be able to maintain the strength of the hydrogel,not readily dissolve but absorb water significantly.
基金supported in part by the Fundamental Research Funds for the Central Universities(2572019BB03 and 2572021CG01)the Startup Fund and the Catalyst Fund from Rowan University and the Research Grant(PC 20-22)from the New Jersey Health Foundation from USAthe Grant(DMR-2116353)from the National Science Foundation.
文摘The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.
文摘Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were;NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm−1, 1604 cm−1, 1239 cm−1, and 1734 cm−1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction.
基金the Guangdong Basic and Applied Basic Research Foundation(2023B1515040013)National Natural Science Foundation of China(22108088)State Key Laboratory of Pulp and Paper Engineering(202105)for the financial support of this work.
文摘Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass.
文摘The application potential of cellulosic materials in natural composites and other fields needs to be explored to develop innovative, sustainable, lightweight, functional biomass materials that are also environmentally friendly. This study investigated Typha angustifolia (Typha sp.) as a potential new raw material for extracting cellulose nanocrystals (CNCs) for application in wastewater treatment composites. Alkaline treatments and bleaching were used to remove cellulose from the stem fibres. The CNCs were then isolated from the recovered cellulose using acid hydrolysis. The study showed a few distinct functional groups (O-H, -C-H, =C-H and C-O, and C-O-C) in the Fourier Transform Infrared (FTIR) spectra. A scanning electron microscope (SEM) revealed the smooth surface of CPC and CNCs, which resulted from removing lignin and hemicellulose from powdered Typha angustifolia. Based on the crystalline index, the powdered Typha angustifolia, CPC, and CNCs were 42.86%, 66.94% and 77.41%. The loss of the amorphous section of the Typha sp. fibre resulted in a decrease in particle size. It may be inferred from the features of a Typha sp. CNC that CNCs may be employed as reinforcement in composites for wastewater treatment.