期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle against lead acetate-induced testicular toxicity in rat
1
作者 Sri Agus Sudjarwo Chairul Anwar +2 位作者 Giftania Wardani Koerniasari Eraiko Koerniasari 《Asian pacific Journal of Reproduction》 2019年第1期13-19,共7页
Objective: To investigate the antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat testis. Methods: Chitosan-Pinus merkusii nanoparticles were i... Objective: To investigate the antioxidant and anti-caspase 3 effect of chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat testis. Methods: Chitosan-Pinus merkusii nanoparticles were identified by dynamic light scattering and scanning electron microscope. The male rats were divided into control group (rats were given with distilled water);lead acetate group [rats were injected with lead acetate 20 mg/kg body weight (BW) i.p.], and the treatment group (rats were given the chitosan-Pinus merkusii nanoparticle 150 mg;300 mg;600 mg/kg BW orally and were injected with lead acetate 20 mg/kg BW). The testis tissues were collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), histological evaluations of testis damage, and the caspase 3 mRNA expression was measured by reverse transcription-polymerase chain reaction. Results: The dynamic light scattering showed that the size of chitosan-Pinus merkusii nanoparticle was (530.2±38.2) nm. The scanning electron microscope images of the chitosan-Pinus merkusii nanoparticles showed an irregular shape, and the morphology surface showed the rough surface. The treatment with lead acetate resulted in significantly increasing MDA level and caspase 3 mRNA expression, and significantly decreasing level of SOD and GPx when compared with control group. The treatment with the chitosan-Pinus merkusii nanoparticle 600 mg/kg BW but not 150 and 300 mg/kg BW significantly decreased the MDA levels, caspase 3 mRNA expression, and also increased level of SOD and GPx when compared with lead acetate group. The lead acetate induced loss of the normal structure of testicular cells and necrosis, whereas treatment with chitosan-Pinus merkusii nanoparticle inhibited testicular cell necrosis. Conclusions: It can be concluded that chitosan-Pinus merkusii nanoparticle protects rat testis from oxidative damage and apoptosis caused by lead acetate, through increasing antioxidant and inhibiting caspase 3 expression. 展开更多
关键词 chitosan-pinus merkusii NANOPARTICLE Lead acetate ANTIOXIDANT CASPASE 3
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部