In this study, an effective environment for Chlorella vulgaris growth is sought after. As a substitute source of food and feed, increasing the cell density of Chlorella culture is one of the keys to ensuring sustainab...In this study, an effective environment for Chlorella vulgaris growth is sought after. As a substitute source of food and feed, increasing the cell density of Chlorella culture is one of the keys to ensuring sustainability. It can be showed from different studies that optimum light intensity and pH could increase cell density. In this study, the effects of light and pH on the growth rate of C. vulgaris were observed in photobioreactor. A specific wavelength (682 nm) was determined by UV-Vis Spectrophotometry to carry out the further analysis. The light intensities were set at 7409, 9261 and 11,113 lux;pH values were set at 7, 8 and 9 respectively. The experimental results depicted the light intensity of 9261 lux as the best due to the higher number of cells (48.56 × 10<sup>6</sup> cells/mL) obtained using this intensity. In terms of pH, without pH control, cell numbers were found to be highest under the light intensity of 9261 lux. When pH was controlled, it was found that under the optimum light intensity, pH control between 7.0 and 7.5 was the optimum range for the growth of C. vulgaris. Moreover, this method of study may possibly be a promising source of low cost culture for Chlorella vulgaris.展开更多
[Objective] The aim of this study is to isolate Chlorella vulgaris(chlorella)and extract its genomic DNA.[Method] Both the dilution method and drip method were employed to isolate chlorella from lake water samples;the...[Objective] The aim of this study is to isolate Chlorella vulgaris(chlorella)and extract its genomic DNA.[Method] Both the dilution method and drip method were employed to isolate chlorella from lake water samples;the conditions for culturing chlorella were optimized and its genomic DNA was extracted by improved CTAB method and SDS method.[Result] The proper conditions for chlorella culture were as following:temperature 20-25 ℃,illumination 4.39-5.86 W/m2 and rotational speed 100-150r/min;improved CTAB method was suitable for extracting genomic DNA from chlorella.[Conclusion] The study is helpful to study the chlorella at molecular level and promote the exploitation and utilization of chlorella resources.展开更多
Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the effi ciency of cell respiration and metabolism.In this stud...Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the effi ciency of cell respiration and metabolism.In this study,we introduced a Vitreoscilla hemoglobin gene(vgb)into Chlorella vulgaris by Agrobacterium tumefaciens-mediated transformation(ATMT).PCR analysis confi rmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome.Analysis of biomass obtained in shake fl asks revealed transformant biomass concentrations as high as 3.28 g/L,which was 38.81% higher than that of the wild-type strain.Lutein content of transformants also increased slightly.Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants,which was 36.77% higher than that of the wild-type strain.The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris,with applications to lutein production from Chlorella during fermentation.展开更多
The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated...The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry展开更多
Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-cultu...Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C.vulgaris and bacteria on their interactions.To test whether the availability of inorganic nutrients,vitamins and trace metals affects the interactions between C.vulgaris and bacteria,experiments were performed with or without the culture medium filtrate of C.vulgaris or bacteria.The results showed that the growth of C.vulgaris was promoted at low concentrations of bacteria(5×106cells/ml),and expressed a positive correlation with the bacteria density,whereas opposite trend was observed for treatments with high bacteria density(10×106cells/ml and 20×106cells/ml).The growth rate of bacteria decreased with the increasing concentrations of C.vulgaris.The growth of bacteria Z-QD08 was inhibited by C.vulgaris through interference competition,while the mechanism for interaction between bacteria Z-QS01 and C.vulgaris was resource competition.The influence of cell density on the interaction between microalgae and bacteria was also discussed.These experiments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.展开更多
A pH dependent reduction in growth, Pigment, ATP content, O,' evolution, carbonfixation, Photosynthetic electron transport system, nutrient uptake (NO,' and NH4+),nitrate reductase, and ATPase activities and i...A pH dependent reduction in growth, Pigment, ATP content, O,' evolution, carbonfixation, Photosynthetic electron transport system, nutrient uptake (NO,' and NH4+),nitrate reductase, and ATPase activities and increase in K+ emux of Chlorella vulgaris wasnoticed following supplementation of Cu and Ni to the culture medium. PS II was foundto be more sensitive to both pH and metals than PS I. Though, nitrate reductase (NR) wasmore sensitive to both PH and metals, the ATPase was however, more sensitive t0 metalsbut less sensitive to acidic pH. Acid PH was found to dst the nutrient (NO,' and NH4+)uptake and nitrate reductase in a non-competitive manner. The inhibition Pnduced by thetest metals alone was of noncompetitive type for NO3' uptake, nitrate reductase andATPase and competitive for NH'+ uptake. Acidity not only inhibited the metabolicvariables directly but also through facilitated uptake of metals and increased membranepermeability. A very low sensitivity of ATPase to acidic pH seems to be resgnsible forthe survival of algae in acid environment.展开更多
文摘In this study, an effective environment for Chlorella vulgaris growth is sought after. As a substitute source of food and feed, increasing the cell density of Chlorella culture is one of the keys to ensuring sustainability. It can be showed from different studies that optimum light intensity and pH could increase cell density. In this study, the effects of light and pH on the growth rate of C. vulgaris were observed in photobioreactor. A specific wavelength (682 nm) was determined by UV-Vis Spectrophotometry to carry out the further analysis. The light intensities were set at 7409, 9261 and 11,113 lux;pH values were set at 7, 8 and 9 respectively. The experimental results depicted the light intensity of 9261 lux as the best due to the higher number of cells (48.56 × 10<sup>6</sup> cells/mL) obtained using this intensity. In terms of pH, without pH control, cell numbers were found to be highest under the light intensity of 9261 lux. When pH was controlled, it was found that under the optimum light intensity, pH control between 7.0 and 7.5 was the optimum range for the growth of C. vulgaris. Moreover, this method of study may possibly be a promising source of low cost culture for Chlorella vulgaris.
基金Supported by the High-level Talents Start-up Fund of Shihezi University(07002-500002061401)~~
文摘[Objective] The aim of this study is to isolate Chlorella vulgaris(chlorella)and extract its genomic DNA.[Method] Both the dilution method and drip method were employed to isolate chlorella from lake water samples;the conditions for culturing chlorella were optimized and its genomic DNA was extracted by improved CTAB method and SDS method.[Result] The proper conditions for chlorella culture were as following:temperature 20-25 ℃,illumination 4.39-5.86 W/m2 and rotational speed 100-150r/min;improved CTAB method was suitable for extracting genomic DNA from chlorella.[Conclusion] The study is helpful to study the chlorella at molecular level and promote the exploitation and utilization of chlorella resources.
基金Supported by the Ocean Public Welfare Scientific Research Special Appropriation Project(No.201005020)
文摘Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the effi ciency of cell respiration and metabolism.In this study,we introduced a Vitreoscilla hemoglobin gene(vgb)into Chlorella vulgaris by Agrobacterium tumefaciens-mediated transformation(ATMT).PCR analysis confi rmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome.Analysis of biomass obtained in shake fl asks revealed transformant biomass concentrations as high as 3.28 g/L,which was 38.81% higher than that of the wild-type strain.Lutein content of transformants also increased slightly.Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants,which was 36.77% higher than that of the wild-type strain.The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris,with applications to lutein production from Chlorella during fermentation.
文摘The photodegradation of 17α-ethynylestradiol (EE2) induced by highpressure mercury lamp (λ≥313 nm, 250 W) in aqueous solution with algae (e. g.Nitzschia hantzschiana andChlorella vulgaris) and Fe3+ was ineestigated initially. The affecting factors on the photodegradation were studied and described in details, such as algae concentration, Fe3+, exposure time, and so on. The concentration of EE2 in distilled water was determined using fluorescence spectrophotometer. The photodegradation of EE2 in aqueous solution exposed to 250 W high-pressure mercury lamp was evident in the presence of algae and Fe3+. With the algae concentration increasing, photodegradation rate increased. Fe3+ could accelerate the photocatalytic degradation of EE2 in aqueous solution with algae. The colloidal ferric hydroxide particles that might have absorbed on the algae cells could enhance the photocatalytic degradation of EE2 by algae. The catalysis in photocatalytic degradation reaction mainly resulted from the active oxygen (H2O2,1O2 and ·OH) that was caused by algae and Fe3+ under 250 W HPML. In this paper, the mechanism of photocatalytic degradation of EE2 by algae and Fe3+ is discussed theoretically in details. Key words 17α-ethynylestradiol - photodegradation - high-pressure mercury lamp - Nitzschia hantzschiana - Chlorella vulgaris - Fe3+ CLC number X 131. 2 Foundation item: Supported by the Scientific Research Foundation of Wuhan Environmental Protection Bureau and the National Natural Science Foundation of China (20177017)Biography: Liu Xian-li (1965-), male, Ph. D candidate, Associate professor, research direction: environmental chemistry
基金Key Projects of Applied Basic and Frontier Technology Research of Tianjin under contract No.13JCZDJC29300scientific research plan program of Tianjin Agricultural University under contract No.2009D005the National Natural Science Foundation of China under contract No.31200400
文摘Research of interaction mechanism between Chlorella vulgaris and two bacterial strains(Z-QD08 and Z-QS01) were conducted under laboratory conditions.Growth rates of bacteria and C.vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C.vulgaris and bacteria on their interactions.To test whether the availability of inorganic nutrients,vitamins and trace metals affects the interactions between C.vulgaris and bacteria,experiments were performed with or without the culture medium filtrate of C.vulgaris or bacteria.The results showed that the growth of C.vulgaris was promoted at low concentrations of bacteria(5×106cells/ml),and expressed a positive correlation with the bacteria density,whereas opposite trend was observed for treatments with high bacteria density(10×106cells/ml and 20×106cells/ml).The growth rate of bacteria decreased with the increasing concentrations of C.vulgaris.The growth of bacteria Z-QD08 was inhibited by C.vulgaris through interference competition,while the mechanism for interaction between bacteria Z-QS01 and C.vulgaris was resource competition.The influence of cell density on the interaction between microalgae and bacteria was also discussed.These experiments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.
文摘A pH dependent reduction in growth, Pigment, ATP content, O,' evolution, carbonfixation, Photosynthetic electron transport system, nutrient uptake (NO,' and NH4+),nitrate reductase, and ATPase activities and increase in K+ emux of Chlorella vulgaris wasnoticed following supplementation of Cu and Ni to the culture medium. PS II was foundto be more sensitive to both pH and metals than PS I. Though, nitrate reductase (NR) wasmore sensitive to both PH and metals, the ATPase was however, more sensitive t0 metalsbut less sensitive to acidic pH. Acid PH was found to dst the nutrient (NO,' and NH4+)uptake and nitrate reductase in a non-competitive manner. The inhibition Pnduced by thetest metals alone was of noncompetitive type for NO3' uptake, nitrate reductase andATPase and competitive for NH'+ uptake. Acidity not only inhibited the metabolicvariables directly but also through facilitated uptake of metals and increased membranepermeability. A very low sensitivity of ATPase to acidic pH seems to be resgnsible forthe survival of algae in acid environment.