The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and...The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and 5%,10% SF,respectively.Five times repeated loadings were applied to specimens,the maximum loadings were 40% and 80% of the axial cylinder compressive strength(f′c),respectively.Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured.The results indicate that the transport number of chloride through concrete containing 20% and 30% GGBFS replacements and 5% and 10% SF replacements is lower than that of the control concrete,but 40% GGBFS replacement increases the transport number of chloride.Five loadings at 40% f′cor 80% f′c increase the transport number of chloride for all mixes investigated in this study.5% SF replacement has a very close effect on the chloride permeability of concrete with 20% GGBFS when concrete is subjected to 40% f′cor 80% f′c.展开更多
The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30...The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30%, and 40%) of mineral admixtures. Five repeated loadings were applied to concrete specimens using a WHY series fully automatic testing machine. The maximum loadings were 40% and 80% of the axial cylinder compressive strength (f′c). Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured. The results showed that the replacement percentages of mineral admixtures, the curing time and repeated loading had a significant effect on chloride migration through concrete. The transport number of chloride through concrete cured for 28 d increased with increasing FA replacement and markedly decreased with extension of the curing time. 20% and 30% GGBFS replacement decreased the transport number of chloride through concrete, but 40% GGBFS replacement increased the transport number. Five repeated loadings at 40% or 80% f′c increased the transport number of chloride for all mixes.展开更多
This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but ...This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.展开更多
This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic speci...This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic species,solution concentration and ambient temperature is proposed in the saturated concrete.Secondly,as an example,the effects of sodium chloride solution concentration,which are associated with influencing factors such as the ionic cloud radius,electrophoresis and relaxation,on the chloride diffusion coefficient are analyzed.It is found that the diffusion coefficient decreases with the increase in solution concentration,and the electrophoresis and ionic cloud radius are two important factors influencing the ionic diffusivity.Finally,the experiments,in which the chloride diffusion coefficients in specimens under different water-cement ratios are measured by the rapid chloride migration(RCM)method,are carried out to validate the effectiveness of the proposed model,and the results indicate that there is a generally reasonable agreement between the experimental and the proposed model results.展开更多
The mechanical and durability characteristics of concrete are crucial for designing and evaluating concrete structures throughout their entire operational lifespan.The main objective of this research is to use the dee...The mechanical and durability characteristics of concrete are crucial for designing and evaluating concrete structures throughout their entire operational lifespan.The main objective of this research is to use the deep learning(DL)method along with an artificial neural network(ANN)to predict the chloride migration coefficient and concrete compressive strength.An expansive experimental database of nearly 1100 data points was gathered from existing scientific literature.Four forecast models were created,utilizing between 10 and 12 input features.The ANN was used to address the missing data gaps in the literature.A comprehensive pre-processing approach was then implemented to identify outliers and encode data attributes.The use of mean absolute error(MAE)as an evaluation metric for regression tasks and the employment of a confusion matrix for classification tasks were found to produce accurate results.Additionally,both the compressive strength and chloride migration coefficient exhibit a high level of accuracy,above 0.85,in both regression and classification tasks.Moreover,a user-friendly web application was successfully developed in the present study using the Python programming language,improving the ability to integrate smoothly with the user’s device.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50808045)Natural Science Foundation of Beijing(Grant No.2112024)Fok Ying Tung Education Foundation (GrantNo.132016)
文摘The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and 5%,10% SF,respectively.Five times repeated loadings were applied to specimens,the maximum loadings were 40% and 80% of the axial cylinder compressive strength(f′c),respectively.Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured.The results indicate that the transport number of chloride through concrete containing 20% and 30% GGBFS replacements and 5% and 10% SF replacements is lower than that of the control concrete,but 40% GGBFS replacement increases the transport number of chloride.Five loadings at 40% f′cor 80% f′c increase the transport number of chloride for all mixes investigated in this study.5% SF replacement has a very close effect on the chloride permeability of concrete with 20% GGBFS when concrete is subjected to 40% f′cor 80% f′c.
基金Project (No. 50808045) supported by the National Natural Science Foundation of China
文摘The effect of fly ash (FA) and ground granulated blast furnace slag (GGBFS) on chloride migration through concrete subjected to repeated loading was examined. Portland cement was replaced by three percentages (20%, 30%, and 40%) of mineral admixtures. Five repeated loadings were applied to concrete specimens using a WHY series fully automatic testing machine. The maximum loadings were 40% and 80% of the axial cylinder compressive strength (f′c). Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured. The results showed that the replacement percentages of mineral admixtures, the curing time and repeated loading had a significant effect on chloride migration through concrete. The transport number of chloride through concrete cured for 28 d increased with increasing FA replacement and markedly decreased with extension of the curing time. 20% and 30% GGBFS replacement decreased the transport number of chloride through concrete, but 40% GGBFS replacement increased the transport number. Five repeated loadings at 40% or 80% f′c increased the transport number of chloride for all mixes.
基金Project (No. 50538070) supported by the National Natural ScienceFoundation of China
文摘This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC) combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.
基金The National Basic Research Program of China(973Program)(No.2009CB623203)the National Natural Science Foundation of China(No.51078186)+2 种基金Program for Special Talents in Six Fields of Jiangsu Province(No.2008169)the Natural Science Foundation of Jiangsu Province(No.BK2010071)China Postdoctoral Science Foundation(No.200902500)
文摘This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic species,solution concentration and ambient temperature is proposed in the saturated concrete.Secondly,as an example,the effects of sodium chloride solution concentration,which are associated with influencing factors such as the ionic cloud radius,electrophoresis and relaxation,on the chloride diffusion coefficient are analyzed.It is found that the diffusion coefficient decreases with the increase in solution concentration,and the electrophoresis and ionic cloud radius are two important factors influencing the ionic diffusivity.Finally,the experiments,in which the chloride diffusion coefficients in specimens under different water-cement ratios are measured by the rapid chloride migration(RCM)method,are carried out to validate the effectiveness of the proposed model,and the results indicate that there is a generally reasonable agreement between the experimental and the proposed model results.
文摘The mechanical and durability characteristics of concrete are crucial for designing and evaluating concrete structures throughout their entire operational lifespan.The main objective of this research is to use the deep learning(DL)method along with an artificial neural network(ANN)to predict the chloride migration coefficient and concrete compressive strength.An expansive experimental database of nearly 1100 data points was gathered from existing scientific literature.Four forecast models were created,utilizing between 10 and 12 input features.The ANN was used to address the missing data gaps in the literature.A comprehensive pre-processing approach was then implemented to identify outliers and encode data attributes.The use of mean absolute error(MAE)as an evaluation metric for regression tasks and the employment of a confusion matrix for classification tasks were found to produce accurate results.Additionally,both the compressive strength and chloride migration coefficient exhibit a high level of accuracy,above 0.85,in both regression and classification tasks.Moreover,a user-friendly web application was successfully developed in the present study using the Python programming language,improving the ability to integrate smoothly with the user’s device.