The X-ray single-crystal structure analyses have been determined for two metal imidazole chlorides: [Fe(Im)6]Cl24H2O 1 and [CuCl(Im)4]Cl 2 (Im = imidazole). The red crystal of compound 1 is of triclinic, space group P...The X-ray single-crystal structure analyses have been determined for two metal imidazole chlorides: [Fe(Im)6]Cl24H2O 1 and [CuCl(Im)4]Cl 2 (Im = imidazole). The red crystal of compound 1 is of triclinic, space group Pi with Mr = 607.31 (C18H32Cl2FeN12O4), a = 8.797(2), b = 9.068(2), c = 10.581(2) ? a = 75.35(3), ?= 83.20(3), ? = 61.85(3)o, V = 720.0(2) 3, Z = 1, Dc = 1.401 g/cm3, F(000) = 316, = 0.755 mm-1, R = 0.0353 and wR = 0.1227. The blue crystal of compound 2 belongs to monoclinic, space group P21/c with Mr = 406.77 (C12H16Cl2CuN8), a = 13.909(3), b = 8.8933(18), c = 15.086(7) ? ?= 118.32(2), V = 1642.7(9) 3, Z = 4, Dc = 1.645 g/cm3, F(000) = 828, = 1.666 mm-1, R = 0.0609 and wR = 0.1726. In solid state, both 1 and 2 form three-dimensional hydrogen bond networks to stabilize the structures which were also characterized by TG and elemental analyses. The thermal gravity (TG) data indicate that the residues are Fe and Cu for 1 and 2, respectively.展开更多
Ion chromatography (IC) is a suitable analytical method for the determination of anions. As analytical methods for the halogen compounds in flue gas, those of bromine compound, fluorine compound, chlorine (Cl2) an...Ion chromatography (IC) is a suitable analytical method for the determination of anions. As analytical methods for the halogen compounds in flue gas, those of bromine compound, fluorine compound, chlorine (Cl2) and hydrogen chloride (HCI) are listed in JIS. However, IC has not been adopted in JIS except for HCI and C12. Because the carbon dioxide in flue gas is absorbed in a 0.1 M sodium hydroxide solution as an absorber, it is interfered with the measurement of F^- and Cl^- ions. This paper describes the development of the pretreatment equipment for the flue gas analysis by IC, and its applications to real flue gas analysis. The F^-, Cl^-, Br^- and SO4^2- in the absorbing solution can be clearly separated by IC using the pretreatment equipment. The halogen compounds and sulfur oxides in flue gas can be simultaneously determined by IC.展开更多
A comparative study of the dissolution kinetics of galena ore in binary solutions of FeCl3/HCl and H2O2/HCl has been undertaken.The dissolution kinetics of the galena was found to depend on leachant concentration,reac...A comparative study of the dissolution kinetics of galena ore in binary solutions of FeCl3/HCl and H2O2/HCl has been undertaken.The dissolution kinetics of the galena was found to depend on leachant concentration,reaction temperature,stirring speed,solid-to-liquid ratio,and particle diameter.The dissolution rate of galena ore increases with the increase of leachant concentration,reaction temperature,and stirring speed,while it decreases with the increase of solid-to-liquid ratio and particle diameter.The activation energy (Ea) of 26.5 kJ/mol was obtained for galena ore dissolution in 0.3 M FeCl3 /8.06 M HCl,and it suggests the surface diffusion model for the leaching reaction,while the Ea value of 40.6 kJ/mol was obtained for its dissolution in 8.06 M H2O2 /8.06 M HCl,which suggests the surface chemical reaction model for the leaching reaction.Furthermore,the linear relationship between rate constants and the reciprocal of particle radius supports the fact that dissolution is controlled by the surface reaction in the two cases.Finally,the rate of reaction based on the reaction-controlled process has been described by a semiempirical mathematical model.The Arrhenius and reaction constants of 11.023 s^-1,1.25×10^-4 and 3.65×10^2 s^-1,8.02×10^ 6 were calculated for the 0.3 M FeCl3/8.06 M HCl and 8.06 M H2O2/8.06 M HCl binary solutions,respectively.展开更多
基金This work was supported by the Natural Science Foundation of Shandong Province (No.Y2002B06)
文摘The X-ray single-crystal structure analyses have been determined for two metal imidazole chlorides: [Fe(Im)6]Cl24H2O 1 and [CuCl(Im)4]Cl 2 (Im = imidazole). The red crystal of compound 1 is of triclinic, space group Pi with Mr = 607.31 (C18H32Cl2FeN12O4), a = 8.797(2), b = 9.068(2), c = 10.581(2) ? a = 75.35(3), ?= 83.20(3), ? = 61.85(3)o, V = 720.0(2) 3, Z = 1, Dc = 1.401 g/cm3, F(000) = 316, = 0.755 mm-1, R = 0.0353 and wR = 0.1227. The blue crystal of compound 2 belongs to monoclinic, space group P21/c with Mr = 406.77 (C12H16Cl2CuN8), a = 13.909(3), b = 8.8933(18), c = 15.086(7) ? ?= 118.32(2), V = 1642.7(9) 3, Z = 4, Dc = 1.645 g/cm3, F(000) = 828, = 1.666 mm-1, R = 0.0609 and wR = 0.1726. In solid state, both 1 and 2 form three-dimensional hydrogen bond networks to stabilize the structures which were also characterized by TG and elemental analyses. The thermal gravity (TG) data indicate that the residues are Fe and Cu for 1 and 2, respectively.
文摘Ion chromatography (IC) is a suitable analytical method for the determination of anions. As analytical methods for the halogen compounds in flue gas, those of bromine compound, fluorine compound, chlorine (Cl2) and hydrogen chloride (HCI) are listed in JIS. However, IC has not been adopted in JIS except for HCI and C12. Because the carbon dioxide in flue gas is absorbed in a 0.1 M sodium hydroxide solution as an absorber, it is interfered with the measurement of F^- and Cl^- ions. This paper describes the development of the pretreatment equipment for the flue gas analysis by IC, and its applications to real flue gas analysis. The F^-, Cl^-, Br^- and SO4^2- in the absorbing solution can be clearly separated by IC using the pretreatment equipment. The halogen compounds and sulfur oxides in flue gas can be simultaneously determined by IC.
文摘A comparative study of the dissolution kinetics of galena ore in binary solutions of FeCl3/HCl and H2O2/HCl has been undertaken.The dissolution kinetics of the galena was found to depend on leachant concentration,reaction temperature,stirring speed,solid-to-liquid ratio,and particle diameter.The dissolution rate of galena ore increases with the increase of leachant concentration,reaction temperature,and stirring speed,while it decreases with the increase of solid-to-liquid ratio and particle diameter.The activation energy (Ea) of 26.5 kJ/mol was obtained for galena ore dissolution in 0.3 M FeCl3 /8.06 M HCl,and it suggests the surface diffusion model for the leaching reaction,while the Ea value of 40.6 kJ/mol was obtained for its dissolution in 8.06 M H2O2 /8.06 M HCl,which suggests the surface chemical reaction model for the leaching reaction.Furthermore,the linear relationship between rate constants and the reciprocal of particle radius supports the fact that dissolution is controlled by the surface reaction in the two cases.Finally,the rate of reaction based on the reaction-controlled process has been described by a semiempirical mathematical model.The Arrhenius and reaction constants of 11.023 s^-1,1.25×10^-4 and 3.65×10^2 s^-1,8.02×10^ 6 were calculated for the 0.3 M FeCl3/8.06 M HCl and 8.06 M H2O2/8.06 M HCl binary solutions,respectively.