期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Synthesis and Characterization of Zinc Oxide and Zinc Oxide Doped with Chlorine Nanoparticles as Novel <i>α</i>-Amylase Inhibitors 被引量:1
1
作者 A. Al-Arfaj Ahlam N. Abd El-Rahman Soheir 《Food and Nutrition Sciences》 2021年第3期308-318,共11页
In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The chara... In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span> 展开更多
关键词 Zinc Oxide Nanoparticles Zinc Oxide Nanoparticles Doped with chlorine Crystallinity Anti-Diabetic Activity α-Amylase Inhibitors
下载PDF
Removal of C.I.Reactive Red 2 by low pressure UV/chlorine advanced oxidation 被引量:4
2
作者 Qianyuan Wu Yue Li +2 位作者 Wenlong Wang Ting Wang Hongying Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第3期227-234,共8页
Azo dyes are commonly found as pollutants in wastewater from the textile industry,and can cause environmental problems because of their color and toxicity.The removal of a typical azo dye named C.I.Reactive Red 2(RR2... Azo dyes are commonly found as pollutants in wastewater from the textile industry,and can cause environmental problems because of their color and toxicity.The removal of a typical azo dye named C.I.Reactive Red 2(RR2) during low pressure ultraviolet(UV)/chlorine oxidation was investigated in this study.UV irradiation at 254 nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone.Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation.Experiments performed with nitrobenzene(NB)or benzoic acid(BA) as scavengers showed that radicals(especially OH) formed during UV/chlorine oxidation are important in the RR2 removal.Addition of HCO_3^- and Cl^- to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. 展开更多
关键词 Textile wastewater Azo dye Ultraviolet irradiation chlorine Advanced oxidation process
原文传递
Study of removal effect on Mesocyclops leukarti with oxidants 被引量:2
3
作者 ZUO Jin-long CUI Fu-yi LIN Tao 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第3期171-179,共9页
Cyclops of zooplankton propagates prolifically in eutrophic waterbody and it cannot be exterminated by conventional disinfection process. The mutagenicity of Mesocyclops leukarti and its extermination with oxidants in... Cyclops of zooplankton propagates prolifically in eutrophic waterbody and it cannot be exterminated by conventional disinfection process. The mutagenicity of Mesocyclops leukarti and its extermination with oxidants in a drinking waterworks in China were studied. Among five oxidants for use in bench-scale, chlorine dioxide is the most effective and the potassium per-manganate is the weakest against Mesocyclops leukarti under the same conditions. Full-scale results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with conventional removal physical process. After filtration, chlorite, a by-product of prechlorine dioxide, is stable at 0.45 mg/L, which is lower than the critical value of the USEPA. GC-MS examination and Ames test further showed that the quantity of organic substance and the mutagenicity in water treated by chlorine dioxide preoxidation are obviously less than those of prechlorination. 展开更多
关键词 OXIDANTS chlorine chlorine dioxide Mesocyclops leukarti PREoxidation Water safety Oxidants chlorine chlorine dioxide Mesocyclops leukarti Preoxidation Water safety
下载PDF
N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation 被引量:9
4
作者 Peng Ding Haoqiang Song +1 位作者 Jiangwei Chang Siyu Lu 《Nano Research》 SCIE EI CSCD 2022年第8期7063-7070,共8页
Electrolysis of seawater offers a highly promising and sustainable route to attain carbon-neutral hydrogen energy without demanding on high-purity water resource.However,it is severely limited by the undesirable chlor... Electrolysis of seawater offers a highly promising and sustainable route to attain carbon-neutral hydrogen energy without demanding on high-purity water resource.However,it is severely limited by the undesirable chlorine oxidation reaction(ClOR)on the anode and the releasing toxic chlorine species,inducing anode corrosion and multiple pollutions to reduce the efficiency and sustainability of this technology.The effective way is to limit the overpotential of oxygen evolution reaction(OER)below 480 mV and thus suppress the ClOR.Herein,we demonstrate that nitrogen-doped carbon dots strongly coupled NiFe layered double hydroxide nanosheet arrays on Ni foam(N-CDs/NiFe-LDH/NF)can efficiently facilitate OER with an ultralow overpotential of 260 mV to deliver the geometric current density of 100 mA·cm^(−2)and a Tafel slope of as low as 43.4 mV·dec−1 in 1.0 M KOH.More importantly,the N-CDs/NiFe-LDH/NF electrode at 100 mA·cm^(−2)shows overpotentials of 285 and 273 mV,respectively,by utilizing 1.0 M KOH with 0.5 M NaCl and 1.0 M KOH with 1.0 M NaCl as the simulated seawater,well avoid triggering ClOR.Notably,despite the complex environment of real seawater,N-CDs/NiFe-LDH/NF still effectively promotes alkaline seawater(1.0 M KOH+seawater)electrolysis with a lifetime longer than 50 and 20 h,respectively,in 1.0 M KOH and alkaline seawater electrolytes.The investigation result reveals that M–N–C bonding generated between N-CDs and NiFe-LDH intrinsically optimizes the charge transfer efficiency,further promoting the OER kinetics. 展开更多
关键词 N-doped carbon dots electrocatalysis oxygen evolution reaction(OER) seawater oxidation chlorine oxidation reaction(ClOR)
原文传递
Enhanced catalytic complete oxidation of 1,2-dichloroethane over mesoporous transition metal-doped γ-Al_2O_3
5
作者 Abbas Khaleel Muhammad Nawaz 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期199-209,共11页
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compoun... High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2. 展开更多
关键词 Chlorinated organic compounds Catalytic oxidation Sol-gel method Mixed metal oxides
原文传递
Advancements in Seawater Electrolysis:Progressing from Fundamental Research to Applied Electrolyzer Application 被引量:1
6
作者 Jinfa Chang Yang Yang 《Renewables》 2023年第4期415-454,共40页
Seawater electrolysis(SWE)provides a promising and efficient pathway to produce green hydrogen.However,the current SWE technology confronts a lot of challenges,such as the sluggish reaction kinetics on the anode side,... Seawater electrolysis(SWE)provides a promising and efficient pathway to produce green hydrogen.However,the current SWE technology confronts a lot of challenges,such as the sluggish reaction kinetics on the anode side,and a lot of impurities and ions in seawater that poison the active sites of the catalyst and block membrane pores.In addition,the existence of chloride ions(Cl−)in seawater will strongly compete with oxygen evolution reaction(OER)by the chlorine oxidation/evolution reaction(ClOR/ClER)on the anode side as a result of the extremely similar thermodynamic potentials.Thus,to move SWE much closer to commercialization,it is highly desirable to enhance not only the activity of electrocatalysts but also the selectivity and stability of efficient OER to restrain ClOR/ClER.At the same time,the additive of electrolytes and the unique structural design of the electrolyzer also promote the development of SWE.In this review,the fundamental mechanisms for SWE and water electrolysis are first introduced and compared.Then,the design principles of efficient catalysts,electrolytes,surface/interface engineering,and novelty reaction device are critically,comprehensively summarized and analyzed.Finally,perspectives,challenges,and opportunities to develop and boost SWE technologies are proposed. 展开更多
关键词 seawater electrolysis water oxidation reaction chlorine oxidation reaction competing reaction SELECTIVITY
原文传递
An efficient chlorination of aromatic compounds using a catalytic amount of iodobenzene 被引量:1
7
作者 Ting-Ting Li Cui Xu +1 位作者 Chang-Bin Xiang Jie Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第6期535-538,共4页
An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylb... An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h,and a series of the monochlorinated compounds was obtained in good yields.In this protocol,the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate,which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds. 展开更多
关键词 Hypervalent iodine intermediate Chlorination Catalytic oxidation Synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部