期刊文献+
共找到12,833篇文章
< 1 2 250 >
每页显示 20 50 100
Seawater nutrient and chlorophyll α distributions near the Great Wall Station, Antarctica 被引量:1
1
作者 GAO Shengquan JIN Haiyan +4 位作者 ZHUANG Yanpei JI Zhongqiang TIAN Shichao ZHANG Jingjing CHEN Jianfang 《Advances in Polar Science》 2015年第1期63-70,共8页
We examined the influences upon nutrient, temperature, salinity and chlorophyll a distributions in Great Wall Cove(GWC) and Ardley Cove(AC), near the Chinese Antarctic Great Wall Station, using measurements taken ... We examined the influences upon nutrient, temperature, salinity and chlorophyll a distributions in Great Wall Cove(GWC) and Ardley Cove(AC), near the Chinese Antarctic Great Wall Station, using measurements taken in January 2013 and other recent data. Nutrient concentrations were high, with phosphate concentrations of 1.94(GWC) and 1.96(AC) μmol·L-1, DIN(dissolved inorganic nitrogen) concentrations of 26.36(GWC) and 25.94(AC) μmol·L-1 and silicate concentrations of 78.6(GWC) and 79.3(AC) μmol·L-1. However, average concentrations of chlorophyll a were low(1.29 μg·L-1, GWC and 1.08 μg·L-1, AC), indicating that this region is a high-nutrient and low-chlorophyll(HNLC) area. Nutrient concentrations of freshwater(stream and snowmelt) discharge into GWC and AC in the austral summer are low, meaning freshwater discharge dilutes the nutrient concentrations in the two coves. Strong intrusion of nutrient-rich water from the Bransfield Current in the south was the main source of nutrients in GWC and AC. Low water temperature and strong wind-induced turbulence and instability in the upper layers of the water column were the two main factors that caused the low phytoplankton biomass during the austral summer. 展开更多
关键词 NUTRIENT chlorophyll α Great Wall Cove Ardley Cove ANTARCTICA
下载PDF
Decadal variability of chlorophyll α in the South China Sea: a possible mechanism
2
作者 刘汾汾 陈楚群 詹海刚 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第6期1054-1062,共9页
Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide... Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam. 展开更多
关键词 叶绿素A浓度 年代际变化 中国南海 可能机制 SEAWIFS 季节变化特征 混合层深度 海洋观测
下载PDF
Size-fractionated Chlorophyll α biomass in the northern South China Sea in summer 2014
3
作者 刘海娇 薛冰 +3 位作者 冯媛媛 张锐 陈绵润 孙军 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第4期672-682,共11页
Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August ... Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 μg/L with a mean value of 0.259±0.247(mean±standard deviation) μg/L. Chl a concentration was generally higher in shallow water(<200 m) than in deep water(>200 m), with mean values of 0.364±0.311 μg/L and 0.206±0.192 μg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30–50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations(SEATS and J4) were determined, with values of pico-(0.7–2 μm), nano-(2–20 μm) and micro- plankton(20–200 μm) ranging from 0.001–0.287(0.093±0.071 μg/L), 0.004–1.149(0.148±0.192 μg/L) and 0.001–0.208(0.023±0.036 μg/L), respectively. Phaeopigment concentrations were determined at specifi c depths at ten stations, except for at station A9, and varied from 0.007 to 0.572(0.127±0.164) μg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Diff erent sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters(30–50 m). The summer monsoon, Kuroshio waters, Zhujiang(Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS. 展开更多
关键词 叶绿素A浓度 夏季季风 南海北部 海域 微型浮游生物 水文条件 粒度分级 色素浓度
下载PDF
Spatio-temporal variability of surface chlorophyll a in the Yellow Sea and the East China Sea based on reconstructions of satellite data of 2001-2020
4
作者 Weichen XIE Tao WANG Wensheng JIANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期390-407,共18页
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20... Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO). 展开更多
关键词 chlorophyll a(Chl a) data interpolation empirical orthogonal function(DINEOF) empirical orthogonal function(EOF)analysis Yellow Sea East China Sea
下载PDF
GOLDEN 2-LIKE transcription factors regulate chlorophyll biosynthesis and flavonoid accumulation in response to UV-B in tea plants 被引量:2
5
作者 Xuyang Liu Xin Cheng +3 位作者 Jingjie Cao Wenfeng Zhu Xiaochun Wan Linlin Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期1055-1066,共12页
Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can inte... Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can integrate both chlorophyll biosynthesis and flavonoid accumulation in response to specific light signals are rarely identified.In this study,we report that the GOLDEN 2-LIKE TF pair,CsGLK1 and CsGLK2,orchestrate UV-B-induced responses in the chlorophyll biosynthesis and flavonoid accumulation of tea leaves.The absence of solar UV-B reduced the transcriptional expression of CsGLKs in the tea leaves and was highly correlated with a decrease in flavonoid levels(especially flavonol glycosides)and the expression of genes and TFs involved in chlorophyll biosynthesis and flavonoid accumulation.In vivo and in vitro molecular analyses showed that CsGLKs could be regulated by the UV-B signal mediator CsHY5,and could directly bind to the promoters of gene and TF involved in light-harvesting(CsLhcb),chlorophyll biosynthesis(CsCHLH,CsHEMA1,and CsPORA),and flavonoid accumulation(CsMYB12,CsFLSa,CsDFRa,and CsLARa),eventually leading to UV-B-induced responses in the chlorophylls and flavonoids of tea leaves.Furthermore,UV-B exposure increased the levels of total flavonoids,CsGLK1 protein,and expression of CsGLKs and target genes in the tea leaves.These results indicate that CsGLKs may modulate tea leaf characteristics by regulating chlorophyll biosynthesis and flavonoid accumulation in response to solar UV-B.As the first report on UV-B-induced changes in flavonoid and chlorophyll regulation mediated by CsGLKs,this study improves our understanding of the environmental regulations regarding tea quality and sheds new light on UV-B-induced flavonoid responses in higher plants. 展开更多
关键词 Camellia sinensis GLK Flavonoid chlorophyll UV-B
下载PDF
Retrieving chlorophyll content and equivalent water thickness of Moso bamboo(Phyllostachys pubescens) forests under Pantana phyllostachysae Chao-induced stress from Sentinel-2A/B images in a multiple LUTs-based PROSAIL framework 被引量:1
6
作者 Zhanghua Xu Anqi He +10 位作者 Yiwei Zhang Zhenbang Hao Yifan Li Songyang Xiang Bin Li Lingyan Chen Hui Yu Wanling Shen Xuying Huang Xiaoyu Guo Zenglu Li 《Forest Ecosystems》 SCIE CSCD 2023年第2期252-267,共16页
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w... Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems. 展开更多
关键词 Moso bamboo chlorophyll content Equivalent water thickness PROSAIL model Multiple LUTs Pantana phyllostachysae Chao Sentinel-2A/B images
下载PDF
Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1167 Chinese soybean accessions
7
作者 Berhane S.GEBREGZIABHER ZHANG Sheng-rui +7 位作者 Muhammad AZAM QI Jie Kwadwo G.AGYENIM-BOATENG FENG Yue LIU Yi-tian LI Jing LI Bin SUN Jun-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2632-2647,共16页
Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids a... Understanding the composition and contents of carotenoids in various soybean seed accessions is important for their nutritional assessment.This study investigated the variability in the concentrations of carotenoids and chlorophylls and revealed their associations with other nutritional quality traits in a genetically diverse set of Chinese soybean accessions comprised of cultivars and landraces.Genotype,planting year,accession type,seed cotyledon color,and ecoregion of origin significantly influenced the accumulation of carotenoids and chlorophylls.The mean total carotenoid content was in the range of 8.15–14.72μg g–1 across the ecoregions.The total carotenoid content was 1.2-fold higher in the landraces than in the cultivars.Soybeans with green cotyledons had higher contents of carotenoids and chlorophylls than those with yellow cotyledons.Remarkably,lutein was the most abundant carotenoid in all the germplasms,ranging from 1.35–37.44μg g–1.Carotenoids and chlorophylls showed significant correlations with other quality traits,which will help to set breeding strategies for enhancing soybean carotenoids without affecting the other components.Collectively,our results demonstrate that carotenoids are adequately accumulated in soybean seeds,however,they are strongly influenced by genetic factors,accession type,and germplasm origin.We identified novel germplasms with the highest total carotenoid contents across the various ecoregions of China that could serve as the genetic materials for soybean carotenoid breeding programs,and thereby as the raw materials for food sectors,pharmaceuticals,and the cosmetic industry. 展开更多
关键词 accession type carotenoid chlorophyll ECOREGION geographical distribution Pearson’s correlation soybean(Glycine max L.Merrill)
下载PDF
Analysis of Seasonal Differences of Chlorophyll,Dimethylsulfide,and Ice Between the Greenland Sea and the Barents Sea
8
作者 ZHONG Guangsheng QU Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1592-1604,共13页
Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)i... Arctic Ocean(AO)climate is closely related to sea ice concentration(ICE)and chlorophyll_a(CHL)concentrations.From 2003–2014,the spatial average concentrations of CHL,ICE,sea surface temperature(SST),wind speed(WIND)in the Greenland Sea region(GS)(20˚W–10˚E,70˚–80˚N)and the Barents Sea region(BS)(30˚–50˚E,70˚–80˚N)are analysed and com-pared.Higher CHL was observed in BS,about 60%higher than that in GS.Compared with the northern regions of BS and GS(BSN and GSN),CHL in the southern region of BS and GS(BSS and GSS)increased by 77%and 42%respectively.More ice melting in BSN is the main reason for phytoplankton proliferation.In 2010,there was an unusual peak of CHL concentration in GSN.The sea-sonal peaks of CHL appeared two weeks earlier in BS than in GS.The earlier and more extensive ice melting and the persistent nega-tive North Atlantic Oscillation(NAO)index may be the reasons for higher CHL blooms in 2010.The spatial average ICE concentra-tion of BS in BSN and BSS is 27%and 1.2%respectively.Negative NAO in the previous winter may lead to an increase in ICE in spring.NAO has a great influence on CHL and ICE in GS.Ice melting is positively correlated with CHL,especially in GS in recent decades,CHL has a significant positive correlation with surface mass concentration of dimethylsulfide(DMS),especially in GS.As an indicator of Arctic warming,BS needs more attention from Arctic researchers. 展开更多
关键词 DIMETHYLSULFIDE chlorophyll ICE North Atlantic Oscillation ARCTIC
下载PDF
Effects of multiple dynamic processes on chlorophyll variation in the Luzon Strait in summer 2019 based on glider observation
9
作者 Xiangpeng WANG Yan DU +1 位作者 Yuhong ZHANG Tianyu WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期469-481,共13页
Luzon Strait is the main channel connecting the South China Sea(SCS)and the western Pacific,with complex atmospheric and oceanic dynamic processes.Based on 44 days of glider measurements and satellite observations,we ... Luzon Strait is the main channel connecting the South China Sea(SCS)and the western Pacific,with complex atmospheric and oceanic dynamic processes.Based on 44 days of glider measurements and satellite observations,we investigated the temporal and vertical variations of chlorophyll-a(Chl-a)concentration in the Luzon Strait from July 25 to September 6,2019.The Chl a was mainly distributed above 200 m and concentrated in the subsurface chlorophyll maximum(SCM)layer.The depth of SCM ranged between 50 m and 110 m,and the magnitude of SCM varied from 0.42 mg/m3 to 1.12 mg/m3.The variation of Chl a was identified with three stages responding to different dynamic processes.Under the influence of Kuroshio intrusion,the SCM depth sharply deepened,and its magnitude decreased in Stage 1.Afterward,a prominent Chl-a bloom was observed in the SCM layer from August 6 to August 16.The Chl-a bloom in Stage 2 was related to the influence of a cyclonic eddy,which uplifted of the thermocline and thus the deep nutrients.During Stage 3,prolonged heavy rainfall in the northeastern SCS resulted in a significant salinity decrease in the upper ocean.The convergence of upper water deepened the thermocline and the mixed layer.Thus,the Chl a decreased in the SCM layer but increased in the surface layer.In particular,a typhoon passed through the Luzon Strait on August 24,which induced the Chl a increase in the upper 50 m.However,there was little change in the depth-integrated Chl a(0-200 m),indicating that the Chl a increase in the surface layer was likely associated with physical entrainment of SCM caused by strong mixing,rather than the phytoplankton bloom in the upper water column.Underwater gliders provide frequent autonomous observations that help us understand the regional ocean’s complex dynamic processes and biological responses. 展开更多
关键词 Luzon Strait glider observations chlorophyll a KUROSHIO cyclonic eddy TYPHOON
下载PDF
Variations in chlorophyll content, stomatal conductance, and photosynthesis in Setaria EMS mutants
10
作者 TANG Chan-juan LUO Ming-zhao +5 位作者 ZHANG Shuo JIA Guan-qing TANG Sha JIA Yan-chao ZHI Hui DIAO Xian-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1618-1630,共13页
Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and... Chlorophyll (Chl) content,especially Chl b content,and stomatal conductance (G_s) are the key factors affecting the net photosynthetic rate (P_n).Setaria italica,a diploid C_4 panicoid species with a simple genome and high transformation efficiency,has been widely accepted as a model in photosynthesis and drought-tolerance research.The current study characterized Chl content,G_s,and P_n of 48 Setaria mutants induced by ethyl methanesulfonate.A total of 24,34,and 35 mutants had significant variations in Chl content,G_s,and P_n,respectively.Correlation analysis showed a positive correlation between increased G_s and increased P_n,and a weak correlation between decreased Chl b content and decreased P_n was also found.Remarkably,two mutants behaved with significantly decreased Chl b content but increased P_n compared to Yugu 1.Seven mutants behaved with significantly decreased G_s but did not decrease P_(n )compared to Yugu 1.The current study thus identified various genetic lines,further exploration of which would be beneficial to elucidate the relationship between Chl content,G_s,and P_n and the mechanism underlying why C_4 species are efficient at photosynthesis and water saving. 展开更多
关键词 photosynthetic capacity chlorophyll content stomatal conductance EMS mutant variation Setaria italica
下载PDF
Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant
11
作者 Weimin Liu Siyan Liu +5 位作者 Kaiyue Zhang Mingwei Xie Haiwei Sun Xiaoqin Huang Lixia Zhang Min Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第6期1162-1176,共15页
Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metaboli... Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea. 展开更多
关键词 Tea plant chlorophyll CsCLH1 CsDOF3 transcription factor CsMYB308 transcription factor
下载PDF
Declined trends of chlorophyll a in the South China Sea over 2005–2019 from remote sensing reconstruction
12
作者 Tianhao Wang Yu Sun +1 位作者 Hua Su Wenfang Lu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第1期12-24,共13页
Chlorophyll a concentration(CHL)is an important proxy of the marine ecological environment and phytoplankton production.Long-term trends in CHL of the South China Sea(SCS)reflect the changes in the ecosystem’s produc... Chlorophyll a concentration(CHL)is an important proxy of the marine ecological environment and phytoplankton production.Long-term trends in CHL of the South China Sea(SCS)reflect the changes in the ecosystem’s productivity and functionality in the regional carbon cycle.In this study,we applied a previously reconstructed 15-a(2005–2019)CHL product,which has a complete coverage at 4 km and daily resolutions,to analyze the long-term trends of CHL in the SCS.Quantile regression was used to elaborate on the long-term trends of high,median,and low CHL values,as an extended method of conventional linear regression.The results showed downward trends of the SCS CHL for the 75th,50th,and 25th quantile in the past 15 a,which were−0.0040 mg/(m^(3)·a)(−1.62%per year),−0.0023 mg/(m^(3)·a)(−1.10%per year),and−0.0019 mg/(m^(3)·a)(−1.01%per year).The negative trends in winter(November to March)were more prominent than those in summer(May to September).In terms of spatial distribution,the downward trend was more significant in regions with higher CHL.These led to a reduced standard deviation of CHL over time and space.We further explored the influence of various dynamic factors on CHL trends for the entire SCS and two typical systems(winter Luzon Strait(LZ)and summer Vietnam Upwelling System(SV))with single-variate linear regression and multivariate Random Forest analysis.The multivariate analysis suggested the CHL trend pattern can be best explained by the trends of wind speed and mixed-layer depth.The divergent importance of controlling factors for LZ and SV can explain the different CHL trends for the two systems.This study expanded our understanding of the long-term changes of CHL in the SCS and provided a reference for investigating changes in the marine ecosystem. 展开更多
关键词 chlorophyll a concentration quantile trends remote sensing reconstruction South China Sea
下载PDF
Effects of Heat Stress during Seed Filling Stage on Brassica napus Seed Oil Accumulation and Chlorophyll Fluorescence Characteristics
13
作者 Ruizhi Huang Huasheng Yu +7 位作者 Yong Yang Heqin Liu Xuelong Wu Zhihong Liu Haiyan He Gengwei Wu Wengjia Wang Hua Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第2期333-348,共16页
As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to h... As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified. 展开更多
关键词 Brassica napus L. heat stress seed filling stage oil accumulation chlorophyll fluorescence characteristics
下载PDF
Comparative Evaluation of Humic Substances: Effect at Cell Level and Chlorophyll Retention during Accelerated Senescence
14
作者 Tirichy Ganesh Prasad Joz Liza +2 位作者 Bargur Jayaram Manjushree Ramarao Nagalakshmi Kumar Devendra 《American Journal of Plant Sciences》 2023年第6期638-652,共15页
The influence of humic substances (HS) formulations derived from sedimentary and compost sources was studied on plant growth at cell level and chlorophyll retention during accelerated senescence of leaf tissue. The di... The influence of humic substances (HS) formulations derived from sedimentary and compost sources was studied on plant growth at cell level and chlorophyll retention during accelerated senescence of leaf tissue. The direct effect of HS formulations was studied on cell expansion using cucumber and radish cotyledon expansion test. The cucumber hypocotyl elongation test was used to study the effect on cell elongation. Chlorophyll pigment retention in excised leaf tissue incubated in dark with high temperature was assessed to study the effect on leaf senescence. Explant tissues were incubated directly in the solutions of the formulations at the concentration recommended for foliar application to the crop plants. HS formulations showed significant variations in their direct bio-stimulatory effects. Formulations derived from compost sources were found superior in terms of inducing a direct stimulatory effect on cell expansion and cell elongation and in maintaining chlorophyll pigment retention during accelerated senescence. HS from sedimentary sources stimulated cell expansion and delayed chlorophyll degradation to a lesser extent compared to HS from compost. However, HS formulations derived from sedimentary sources used in this study were not effective in inducing cell elongation in the cucumber hypocotyl elongation test. The direct bio-stimulatory effect of HS formulations differed significantly between the formulations that were evaluated. 展开更多
关键词 Biostimulants chlorophyll COMPOST COTYLEDON Humic Substances HYPOCOTYL SEDIMENTARY
下载PDF
Chlorophyll Fluorescence Response of Persimmon Plants under Salt Stress
15
作者 Xining GENG Lihua XIE +1 位作者 Jingwen XU Ruiyuan WANG 《Medicinal Plant》 CAS 2023年第5期42-44,共3页
[Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stre... [Objectives]To study the photosynthetic response mechanism of persimmon seedlings to salt stress.[Methods]The chlorophyll fluorescence parameters of Diospyros virginiana and Diospyros lotus seedlings under 4%salt stress were studied by pot culture salt control method,including the minimal fluorescence(F_(0)),maximum fluorescence(F_(m)),potential activity of PS II(F_(v)/F_(0)),maximum photochemical efficiency of PS II(F_(v)/F_(m)),electron transport rate(ETR),actual photochemical efficiency of PS II(Y II),and photochemical quenching coefficient(q_(p)).[Results]Under 4%salt stress,the maximum fluorescence(F_(m)),maximum photochemical efficiency of PS II(F v/F m),and photochemical quenching coefficient(q_(p))of two persimmon plants decreased with time.The potential activity of PS II(F_(v)/F_(0)),actual photochemical efficiency of PS II(Y_(II)),and electron transport rate(ETR)decreased under salt stress.[Conclusions]This study indicates that the PS II reaction center in the persimmon leaves was damaged and the electron transport at the acceptor side was damaged under salt stress.It is expected to lay a foundation for the analysis of salt-tolerance mechanism of persimmon plants. 展开更多
关键词 chlorophyll fluorescence Salt stress Diospyros virginiana Diospyros lotus
下载PDF
Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances 被引量:27
16
作者 WU Ya-wei LI Qiang +6 位作者 JIN Rong CHEN Wei LIU Xiao-lin KONG Fan-lei KE Yong-pei SHI Haichun YUAN Ji-chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1246-1256,共11页
Nitrogen(N)is a critical element for plant growth and productivity that influences photosynthesis and chlorophyll fluorescence.We investigated the effect of low-N stress on leaf photosynthesis and chlorophyll fluoresc... Nitrogen(N)is a critical element for plant growth and productivity that influences photosynthesis and chlorophyll fluorescence.We investigated the effect of low-N stress on leaf photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with difference in tolerance to low N levels.The low-N tolerant cultivar ZH311 and low-N sensitive cultivar XY508 were used as the test materials.A field experiment(with three N levels:N0,0 kg ha–1;N1,150 kg ha–1;N2,300 kg ha–1)in Jiyanyang,Sichuan Province,China,and a hydroponic experiment(with two N levels:CK,4 mmol L–1;LN,0.04 mmol L–1)in Chengdu,Sichuan Province,China were conducted.Low-N stress significantly decreased chlorophyll content and rapid light response curves of the maximum fluorescence under light(Fm′),fluorescence instable state(Fs),non-photochemical quenching(qN),the maximum efficiency of PSII photochemistry under dark-adaption(Fv/Fm),potential activity of PSII(Fv/Fo),and actual photochemical efficiency of PSII(ΦPSII)of leaves.Further,it increased the chlorophyll(Chl)a/Chl b values and so on.The light compensation point of ZH311 decreased,while that of XY508 increased.The degree of variation of these indices in low-N tolerant cultivars was lower than that in low-N sensitive cultivars,especially at the seedling stage.Maize could increase Chl a/Chl b,apparent quantum yield and light saturation point to adapt to N stress.Compared to low-N sensitive cultivars,low-N tolerant cultivars maintained a higher net photosynthetic rate and electron transport rate to maintain stronger PSII activity,which further promoted the ability to harvest and transfer light.This might be a photosynthetic mechanism by which low-N tolerant cultivar adapt to low-N stress. 展开更多
关键词 MAIZE NITROGEN chlorophyll CONTENT PHOTOSYNTHESIS chlorophyll FLUORESCENCE characteristics
下载PDF
Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley 被引量:51
17
作者 LI Rong-hua GUO Pei-guo +2 位作者 Michael Baum Stefania Grando Salvatore Ceccarelli 《Agricultural Sciences in China》 CAS CSCD 2006年第10期751-757,共7页
Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genoty... Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genotypes to reduce the impact of water deficit on crop yield in breeding program. The objective of this study was to identify indicators related to drought tolerance through analysis of photosynthetic traits in barley (Hordeum vulgare L.). These traits included chlorophyll content, initial fluorescence (Fo), maximum primary yield of photochemistry of photosystem Ⅱ (Fv /Fo) and maximum quantum yield of photosystem Ⅱ (Fv/Fm). Four genotypes (Tadmor, Arta, Morocco9-75 and WI2291) variable in drought tolerance were used to investigate the correlation between these traits and drought tolerance. The results reflected that all of these traits were affected negatively in the four genotypes at different levels of post-anthesis drought stress, but the decrease in drought tolerant genotypes was much less than that of drought sensitive genotypes. The results further revealed that the components of the photosynthetic apparatus could be damaged significantly in drought sensitive genotypes, while drought tolerant genotypes were relatively less affected. On the other hand, the values of chlorophyll content, Fo, Fv/Fo and Fv/Fm in drought tolerance genotypes were significantly higher than those in drought sensitive genotypes under drought stress. It was concluded that chlorophyll content, Fo, Fv/Fo and Fv/Fm could be considered as reliable indicators in screening barley germplasm for drought tolerance. 展开更多
关键词 barley (Hordeum vulgare L.) chlorophyll chlorophyll fluorescence parameters drought tolerance
下载PDF
Effect of Low Light on the Characteristics of Photosynthesis and Chlorophyll a Fluorescence During Leaf Development of Sweet Pepper 被引量:23
18
作者 SUI Xiao-lei MAO Sheng-li +2 位作者 WANG Li-hao ZHANG Bao-xi ZHANG Zhen-xian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1633-1643,共11页
Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant gen... Low light stress is one of the main limiting factors which influence the production of sweet pepper under protected cultivation in China. In this experiment, two genotypes of sweet pepper, ShY (low light-tolerant genotype) and 20078 (low light-sensitive genotype), were used to study the effects of low light (photosynthetic photon flux density, PPFD was 75- 100 umol m-2 s-1, control 450-500 umol m-2 s-1) on photosynthesis during leaf development. The result indicated that under low light chlorophyll content, net photosynthetic rate (PN), photosynthetic apparent quantum efficiency (Фi) and carboxylation efficiency (CE) of sweet pepper leaves increased gradually and decreased after reaching the maximum levels. The time to reach the peak values for all the above parameters was delayed, whereas the light compensation point (LCP) decreased gradually along with leaf expansion. The decrease in maximum quantum yield of PS II (Fv/Fm) was not observed at any stages of the leaf development under low light condition, but the actual PS II efficiency under irradiance (ФPS II) was lower accompanied by an increased non-photochemical quenching (NPQ) in young and/or old leaves compared with mature leaves. The antenna thermal dissipation (D) was a main way of heat dissipation when young leaves received excessive light energy, while the decline in photosynthetic function in senescence leaf was mostly owing to the decrease in carbon assimilation capacity, followed by a significantly increased allocation of excessive energy (Ex). Compared with 20078, ShY could maintain higher PN, ФPS II and lower QA reduction state for a longer time during leaf development. Thus, in ShY photosynthetic efficiency and the activity of electron transport of PS II were not significantly affected due to low light stress. 展开更多
关键词 sweet pepper low light photosynthetic efficiency chlorophyll fluorescence leaf development
下载PDF
Effects of Nitrogen Application on Chlorophyll Fluorescence Parameters and Leaf Gas Exchange in Naked Oat 被引量:22
19
作者 LIN Ye-chun HU Yue-gao +6 位作者 REN Chang-zhong GUO Lai-chun WANG Chun-long JIANG Ying WANG Xue-jiao Phendukani Hlatshwayo ZENG Zhao-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2164-2171,共8页
Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in th... Naked oat(Avena nuda L.) was originated from China,where soil nitrogen(N) is low availability.The responses of chlorophyll(Chl.) fluorescence parameters and leaf gas exchange to N application were analysed in this study.After the N application rate ranged from 60 to 120 kg ha-1,variable fluorescence(F v),the maximal fluorescence(F m),the maximal photochemical efficiency(F v /F m),quantum yield(Φ PS II) of the photosynthetic system II(PS II),electron transport rate(ETR),and photochemical quenching coefficient(qP) increased with N application level,however,non-photochemical quenching coefficient(qN) decreased.Moreover,there was no difference in initial fluorescence(F o) with further more N enhancement.The maximum net photosynthetic rate(P max),apparent dark respiration rate(R d) and light saturation point(LSP) were improved with 40-56 kg N ha-1as basal fertilizer and 24-40 kg N ha-1as top dressing fertilizer applied at jointing stage.Initial quantum yield(α) was decreased with 24 kg N ha-1as basal fertilizer and 56 kg N ha-1as top dressing fertilizer.Flag-leaf net photosynthetic rate(P n) was significantly enhanced at the jointing and heading stages with 40-56 kg N ha-1as basal fertilizer; in addition,increased at grain filling stage of naked oat with 40-56 kg N ha-1as top dressing fertilizer.90 kg N ha-1(50-70% as basal fertilizer and 30-50% as top dressing fertilizer) application is recommended to alleviate photodamage of photosystem and improve the photosynthetic rate in naked oat. 展开更多
关键词 Avena nuda nitrogen fertilizer nitrogen application chlorophyll fluorescence gas exchange
下载PDF
Distributions of chlorophyll a and carbon fixed strength of phyto-plankton in autumn of the southern Huanghai Sea waters 被引量:13
20
作者 ZHENG Guoxia SONG Jinming +1 位作者 DAI Jicui WANG Yiming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第3期68-81,共14页
Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution featu... Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea). 展开更多
关键词 chlorophyll a primary productivity carbon fixed strength southern Huanghai Sea
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部