Chloroplasts are the center of plant life activities including photosynthesis,growth and development,and abiotic stress response.Chloroplast development and biogenesis in rice have been studied in detail,but how does ...Chloroplasts are the center of plant life activities including photosynthesis,growth and development,and abiotic stress response.Chloroplast development and biogenesis in rice have been studied in detail,but how does abiotic stress affect chloroplasts is less studied.We obtained an albino mutant,alm1,whose chlorophyll content was greatly decreased.Transmission electron microscopy showed that chloroplast development in alm1 was blocked,especially in thylakoid-like structures,which could not form normally.The ALM1 gene encodes a chloroplast-localized superoxide dismutase.Full-length ALM1 successfully restored the non-albino phenotype,and in knockout lines,the albino phenotype reappeared.The ALM1gene is expressed mainly in young leaves.alm1 plants died as a consequence of excessive reactive oxygen accumulation after the third-leaf stage.A series of biochemical assays verified that ALM1 interacted with the OsTrxz protein,which is one of the components of plastid-encoded RNA polymerase (PEP) complexes.A western blot experiment indicated that ALM1 played an important role in stabilizing OsTrxz in rice.An overexpression test of ALM1 revealed that ALM1 can increase drought resistance by removing excess reactive oxygen in rice seedlings.This study suggests that ALM1 not only participates in rice chloroplast biogenesis,but also increases rice stress resistance by scavenging excess reactive oxygen.展开更多
VAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) ...VAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) that contain white sectors with abnormal plastids and green sectors with normal-appearing chloroplasts. In a continuing effort to isolate second-site suppressors of var2 variegation, we characterize in this report ems2505, a suppressor strain that has a virescent phenotype due to a missense mutation in At4g28590, the gene for a pioneer protein. We designated this gene SVR4 (for SUPPRESSOR OF VARIEGATION4) and the mutant allele in ems2505 as svr4-1. We demonstrate that SVR4 is located in chloroplasts and that svr4-1 single mutants are normal with respect to chloroplast anatomy and thylakoid membrane protein accumulation. However, they are modestly impaired in several aspects of photochemistry and have enhanced non-photochemical quenching (NPQ) capacity. A T-DNA insertion allele of SVR4, svr4-2, is seedling-lethal due to an early blockage of chloroplast development. We conclude that SVR4 is essential for chloroplast biogenesis, and hypothesize that SVR4 mediates some aspect of thylakoid structure or function that controls NPQ. We propose that in the suppressor strain, photoinhibitory pressure caused by a lack of VAR2 is ameliorated early in chloroplast development by enhanced NPQ capacity caused by reduced SVR4 activity. This would result in an increase in the number of chloroplasts that are able to surmount a threshold necessary to avoid photo-damage and thereby develop into functional chloroplasts.展开更多
Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in...Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecbl-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a βαβαββα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development.展开更多
tRNase Z (TRZ) is a ubiquitous endonuclease that removes the 3'-trailer from precursor tRNAs during maturation. In yeast and animals, TRZ regulates the cell cycle via its (t)RNA processing activity; however, its ...tRNase Z (TRZ) is a ubiquitous endonuclease that removes the 3'-trailer from precursor tRNAs during maturation. In yeast and animals, TRZ regulates the cell cycle via its (t)RNA processing activity; however, its physiological function in higher plants has not been well characterized. This study describes the identification of a rice (Oryza sativa) TRZ2 mutant; plants homozygous for the osatrz2 mutation were albinos with deficient chlorophyll content. A microscopic analysis of the mutant plants revealed that the transition of proplastids to chloroplasts was arrested at an early stage, and the number and size of the plastids in callus cells was substantially decreased. A genetic complementation test and an RNA interference analysis confirmed that disruption of OsaTRZ2 was responsible for the mutant phenotype. OsaTRZ2 is expressed in all rice tissues, but is preferentially expressed in leaves, sheathes, and calli. OsaTRZ2 was subcellularly localized in chloroplasts, and displayed tRNA 3'-end processing activity in both in vitro and in vivo assays. In the osatrz2 mutants, transcription of plastid-encoded and nucleus- encoded RNA polymerases was severely reduced and moderately increased, respectively. These results suggest that the tRNA 3' processing activity of OsaTRZ2 contributes to chloroplast biogenesis.展开更多
In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identi...In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice(Oryza sativa) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of THA8(thylakoid assembly 8) in Arabidopsis and maize. This gene is designated as OsTHA8 hereafter. OsTHA8 showed a typical pentatricopeptide repeat(PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. OsTHA8 was expressed mainly in young leaves and leaf sheaths.The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of ndhB-611/737 and rps8-182 transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor(OsMORF8) and thioredoxin z(OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene ycf3 was detected in ostha8. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.展开更多
Mature chloroplasts,as the main sites of photosynthesis,are essential for seedling growth in higher plants.Loss of function of genes involved in chloroplast development changes plant phenotype.We obtained a YELLOW COT...Mature chloroplasts,as the main sites of photosynthesis,are essential for seedling growth in higher plants.Loss of function of genes involved in chloroplast development changes plant phenotype.We obtained a YELLOW COTYLEDON (YCO) mutant in rapeseed (Brassica napus L.) using CRISPR-Cas9.Bn.YCO,a gene of unknown function,has two homologous copies (Bna A01.YCO and Bna C01.YCO) in B.napus.Homozygous mutation of these two homologs resulted in yellow cotyledons and chlorotic true leaves.Transmission electron microscopy revealed that the formation of thylakoid membranes was inhibited in yellow cotyledons.Sequence similarity search revealed that YCO was conserved in different species,and a subcellular location assay verified that Bn.YCO was located in the chloroplast.Bn.YCO was expressed in multiple tissues,most highly in cotyledons.Knockout of Bn.YCO blocked the transcription of plastid genes,especially those of photosystem genes transcribed by plastid-encoded polymerase.Transcriptome sequencing showed that the majority of genes involved in ribosome assembly and photosynthesis were down-regulated in Bn.yco mutants.These results suggested that loss of function of Bn.YCO affected plastid gene transcription,which influenced chloroplast biogenesis in rapeseed seedlings.展开更多
In this work, we present an ultrastructural and physiological description of a novel chlorophyll-deficient, yellow cell line of the grass Bouteloua gracilis that develops etioplast-like plastids in presence of light (...In this work, we present an ultrastructural and physiological description of a novel chlorophyll-deficient, yellow cell line of the grass Bouteloua gracilis that develops etioplast-like plastids in presence of light (YELP). These mutant cells were compared to the parental, wild-type, highly chlorophyllous cells from which they were isolated. Growth analysis, based on fresh and dry weights, indicated that YELP accumulates biomass at a slower rate than the parental, green cells. Besides, YELP developed very low levels of photosynthetic pigments, reaching only 9.3% and 38.4% of chlorophyll a and chlorophyll b, respectively, developed by the wild-type cells. Likewise, the accessory pigments, carotenes and xanthophylls, were only synthesized at 8.0% and 5.4%, respectively, of the levels reached by the green cells. Electron microscopy revealed remarkable differences in plastid ultrastructure between the wild-type and mutant cells. Plastids of YELP were heterogeneous and smaller than those found in wild-type cells. YELP plastids were abnormal with poorly developed membrane systems that prevented the accumulation of chlorophyll and accessory pigments in the mutant cell line. We expect this novel, mutant cell line will provide new tools for studying plastid development and differentiation.展开更多
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic pro- cess...Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic pro- cesses, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degrada- tion, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remod- eling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation ma- chineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.展开更多
Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components o...Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely atTic22-III and atTic22-IV. We investigated the function of Tic22 in vivo by analyzing T-DNA insertion lines of the corresponding genes. While the T-DNA insertion in the individual genes caused only slight defects, a double mutant of both isoforms showed retarded growth, a pale phenotype under high-light conditions, a reduced import rate, and a reduction in the photosynthetic performance of the plants. The latter is supported by changes in the metabolite content of mutant plants when compared to wild-type. Thus, our results support the notion that Tic22 is directly involved in chloroplast preprotein import and might point to a particular importance of Tic22 in chloroplast biogenesis at times of high import rates.展开更多
基金supported by Key Laboratory of Joint CAAS/ IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvementsupported by the National Key Research and Development Program of China (2020YFA0907600)+1 种基金the Agricultural Science and Technology Innovation Program (CAAS-ZDXT2019003)Fundamental Research Funds for Central Non-profit Scientific Institution。
文摘Chloroplasts are the center of plant life activities including photosynthesis,growth and development,and abiotic stress response.Chloroplast development and biogenesis in rice have been studied in detail,but how does abiotic stress affect chloroplasts is less studied.We obtained an albino mutant,alm1,whose chlorophyll content was greatly decreased.Transmission electron microscopy showed that chloroplast development in alm1 was blocked,especially in thylakoid-like structures,which could not form normally.The ALM1 gene encodes a chloroplast-localized superoxide dismutase.Full-length ALM1 successfully restored the non-albino phenotype,and in knockout lines,the albino phenotype reappeared.The ALM1gene is expressed mainly in young leaves.alm1 plants died as a consequence of excessive reactive oxygen accumulation after the third-leaf stage.A series of biochemical assays verified that ALM1 interacted with the OsTrxz protein,which is one of the components of plastid-encoded RNA polymerase (PEP) complexes.A western blot experiment indicated that ALM1 played an important role in stabilizing OsTrxz in rice.An overexpression test of ALM1 revealed that ALM1 can increase drought resistance by removing excess reactive oxygen in rice seedlings.This study suggests that ALM1 not only participates in rice chloroplast biogenesis,but also increases rice stress resistance by scavenging excess reactive oxygen.
文摘VAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) that contain white sectors with abnormal plastids and green sectors with normal-appearing chloroplasts. In a continuing effort to isolate second-site suppressors of var2 variegation, we characterize in this report ems2505, a suppressor strain that has a virescent phenotype due to a missense mutation in At4g28590, the gene for a pioneer protein. We designated this gene SVR4 (for SUPPRESSOR OF VARIEGATION4) and the mutant allele in ems2505 as svr4-1. We demonstrate that SVR4 is located in chloroplasts and that svr4-1 single mutants are normal with respect to chloroplast anatomy and thylakoid membrane protein accumulation. However, they are modestly impaired in several aspects of photochemistry and have enhanced non-photochemical quenching (NPQ) capacity. A T-DNA insertion allele of SVR4, svr4-2, is seedling-lethal due to an early blockage of chloroplast development. We conclude that SVR4 is essential for chloroplast biogenesis, and hypothesize that SVR4 mediates some aspect of thylakoid structure or function that controls NPQ. We propose that in the suppressor strain, photoinhibitory pressure caused by a lack of VAR2 is ameliorated early in chloroplast development by enhanced NPQ capacity caused by reduced SVR4 activity. This would result in an increase in the number of chloroplasts that are able to surmount a threshold necessary to avoid photo-damage and thereby develop into functional chloroplasts.
文摘Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecbl-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a βαβαββα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development.
基金supported by the 863 Project (2012AA10A303)the Fundamental Research Funds for the Central Universities (2013PY020 and 2013PY062)
文摘tRNase Z (TRZ) is a ubiquitous endonuclease that removes the 3'-trailer from precursor tRNAs during maturation. In yeast and animals, TRZ regulates the cell cycle via its (t)RNA processing activity; however, its physiological function in higher plants has not been well characterized. This study describes the identification of a rice (Oryza sativa) TRZ2 mutant; plants homozygous for the osatrz2 mutation were albinos with deficient chlorophyll content. A microscopic analysis of the mutant plants revealed that the transition of proplastids to chloroplasts was arrested at an early stage, and the number and size of the plastids in callus cells was substantially decreased. A genetic complementation test and an RNA interference analysis confirmed that disruption of OsaTRZ2 was responsible for the mutant phenotype. OsaTRZ2 is expressed in all rice tissues, but is preferentially expressed in leaves, sheathes, and calli. OsaTRZ2 was subcellularly localized in chloroplasts, and displayed tRNA 3'-end processing activity in both in vitro and in vivo assays. In the osatrz2 mutants, transcription of plastid-encoded and nucleus- encoded RNA polymerases was severely reduced and moderately increased, respectively. These results suggest that the tRNA 3' processing activity of OsaTRZ2 contributes to chloroplast biogenesis.
基金supported by the Natural Science Foundation of Hebei Province (C2021208014)the Key R&D Program of Hebei Province (22326312D, 21326332D)。
文摘In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice(Oryza sativa) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of THA8(thylakoid assembly 8) in Arabidopsis and maize. This gene is designated as OsTHA8 hereafter. OsTHA8 showed a typical pentatricopeptide repeat(PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. OsTHA8 was expressed mainly in young leaves and leaf sheaths.The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of ndhB-611/737 and rps8-182 transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor(OsMORF8) and thioredoxin z(OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene ycf3 was detected in ostha8. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.
基金financially supported by the National Natural Science Foundation of China (31871654, 31501340)National Key Research Development Program of China (2016YFD0101300)the China Agriculture Research System (CARS-12)。
文摘Mature chloroplasts,as the main sites of photosynthesis,are essential for seedling growth in higher plants.Loss of function of genes involved in chloroplast development changes plant phenotype.We obtained a YELLOW COTYLEDON (YCO) mutant in rapeseed (Brassica napus L.) using CRISPR-Cas9.Bn.YCO,a gene of unknown function,has two homologous copies (Bna A01.YCO and Bna C01.YCO) in B.napus.Homozygous mutation of these two homologs resulted in yellow cotyledons and chlorotic true leaves.Transmission electron microscopy revealed that the formation of thylakoid membranes was inhibited in yellow cotyledons.Sequence similarity search revealed that YCO was conserved in different species,and a subcellular location assay verified that Bn.YCO was located in the chloroplast.Bn.YCO was expressed in multiple tissues,most highly in cotyledons.Knockout of Bn.YCO blocked the transcription of plastid genes,especially those of photosystem genes transcribed by plastid-encoded polymerase.Transcriptome sequencing showed that the majority of genes involved in ribosome assembly and photosynthesis were down-regulated in Bn.yco mutants.These results suggested that loss of function of Bn.YCO affected plastid gene transcription,which influenced chloroplast biogenesis in rapeseed seedlings.
文摘In this work, we present an ultrastructural and physiological description of a novel chlorophyll-deficient, yellow cell line of the grass Bouteloua gracilis that develops etioplast-like plastids in presence of light (YELP). These mutant cells were compared to the parental, wild-type, highly chlorophyllous cells from which they were isolated. Growth analysis, based on fresh and dry weights, indicated that YELP accumulates biomass at a slower rate than the parental, green cells. Besides, YELP developed very low levels of photosynthetic pigments, reaching only 9.3% and 38.4% of chlorophyll a and chlorophyll b, respectively, developed by the wild-type cells. Likewise, the accessory pigments, carotenes and xanthophylls, were only synthesized at 8.0% and 5.4%, respectively, of the levels reached by the green cells. Electron microscopy revealed remarkable differences in plastid ultrastructure between the wild-type and mutant cells. Plastids of YELP were heterogeneous and smaller than those found in wild-type cells. YELP plastids were abnormal with poorly developed membrane systems that prevented the accumulation of chlorophyll and accessory pigments in the mutant cell line. We expect this novel, mutant cell line will provide new tools for studying plastid development and differentiation.
文摘Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic pro- cesses, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degrada- tion, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remod- eling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation ma- chineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
文摘Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely atTic22-III and atTic22-IV. We investigated the function of Tic22 in vivo by analyzing T-DNA insertion lines of the corresponding genes. While the T-DNA insertion in the individual genes caused only slight defects, a double mutant of both isoforms showed retarded growth, a pale phenotype under high-light conditions, a reduced import rate, and a reduction in the photosynthetic performance of the plants. The latter is supported by changes in the metabolite content of mutant plants when compared to wild-type. Thus, our results support the notion that Tic22 is directly involved in chloroplast preprotein import and might point to a particular importance of Tic22 in chloroplast biogenesis at times of high import rates.