High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed ...High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed and adequately understood.It is well known that a strong JouleThomson Cooling effect can occur when pressurized CO_(2) flows through a choke valve.Thus,to investigate the choking characteristics especially the temperature drop of high pressure CO_(2),a new laboratory scale experimental setup(total length of 14.85 m and the inner diameter of 15 mm)was constructed.Steady choked flow and transient choked flow tests were carried out respectively for pressurized CO_(2) in various initial phases.The phase transitions and temperature drop characteristics were then studied following the choked flow and the results show that the phase transitions in steady choked flow differs significantly from that in transient choked flow.For transient choked flow of various initial phases,all the flows downstream would transfer from single phase to gas-liquid twophase flow.Furthermore,the effect of water on transient choked flow of supercritical CO_(2) pipeline was investigated,and the phenomena of solid particles deposition was captured which was paramount importance of ensuring the safety operation of CO_(2)pipelines when throttling by the choke valves.展开更多
Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of n...Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier...The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier-Stokes equa- tions. A fully implicit finite volume scheme has been employed to discretize the governing equations. Based upon the present CFD results, the particle loading effect on gas-solid suspension flow was investigated. The results show that the presence of particles has a big influence on the gas phase behavior. The structure of shock train, the separation point, and the vortex of the backflow are all related to particle loading. As the particle loading increases the flow characteris- tics behave differently such as 1) the strength of shock train decreases, 2) the separation point moves toward the nozzle exit, 3) the number and strength of vortex increase, 4) the strength of first shock also increases while the other pseudo shocks decreases. The change of gas flow behavior in turn affects the particle distribution. The particles are concen- trated at the shear layers separated from the upper wall surface.展开更多
One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introd...One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a self- similar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A re- lation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.展开更多
基金Key laboratory of oil&gas storage&transportation PetroChina(GDGS-KJZX-2016-JS-379)supported by the National Science and Technology Special Project(2016ZX05016-002).
文摘High pressure pipeline transportation has been an established technology for economically transporting large amounts of CO_(2).However,there are still issues and associated risks that have to be effectively addressed and adequately understood.It is well known that a strong JouleThomson Cooling effect can occur when pressurized CO_(2) flows through a choke valve.Thus,to investigate the choking characteristics especially the temperature drop of high pressure CO_(2),a new laboratory scale experimental setup(total length of 14.85 m and the inner diameter of 15 mm)was constructed.Steady choked flow and transient choked flow tests were carried out respectively for pressurized CO_(2) in various initial phases.The phase transitions and temperature drop characteristics were then studied following the choked flow and the results show that the phase transitions in steady choked flow differs significantly from that in transient choked flow.For transient choked flow of various initial phases,all the flows downstream would transfer from single phase to gas-liquid twophase flow.Furthermore,the effect of water on transient choked flow of supercritical CO_(2) pipeline was investigated,and the phenomena of solid particles deposition was captured which was paramount importance of ensuring the safety operation of CO_(2)pipelines when throttling by the choke valves.
文摘Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
文摘The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier-Stokes equa- tions. A fully implicit finite volume scheme has been employed to discretize the governing equations. Based upon the present CFD results, the particle loading effect on gas-solid suspension flow was investigated. The results show that the presence of particles has a big influence on the gas phase behavior. The structure of shock train, the separation point, and the vortex of the backflow are all related to particle loading. As the particle loading increases the flow characteris- tics behave differently such as 1) the strength of shock train decreases, 2) the separation point moves toward the nozzle exit, 3) the number and strength of vortex increase, 4) the strength of first shock also increases while the other pseudo shocks decreases. The change of gas flow behavior in turn affects the particle distribution. The particles are concen- trated at the shear layers separated from the upper wall surface.
文摘One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a self- similar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A re- lation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.