期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Photobiomodulation inhibits the expression of chondroitin sulfate proteoglycans after spinal cord injury via the Sox9 pathway 被引量:1
1
作者 Zhihao Zhang Zhiwen Song +12 位作者 Liang Luo Zhijie Zhu Xiaoshuang Zuo Cheng Ju Xuankang Wang Yangguang Ma Tingyu Wu Zhou Yao Jie Zhou Beiyu Chen Tan Ding Zhe Wang Xueyu Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期180-189,共10页
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins ... Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury. 展开更多
关键词 chondroitin sulfate proteoglycans Erk MAPK P38 PHOTOBIOMODULATION principal component analysis SMAD3 SOX9 spinal cord injury VERSICAN
下载PDF
M1-type microglia can induce astrocytes to deposit chondroitin sulfate proteoglycan after spinal cord injury 被引量:9
2
作者 Shui-Sheng Yu Zi-Yu Li +6 位作者 Xin-Zhong Xu Fei Yao Yang Luo Yan-Chang Liu Li Cheng Mei-Ge Zheng Jue-Hua Jing 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第5期1072-1079,共8页
After spinal cord injury(SCI),astrocytes gradually migrate to and surround the lesion,depositing chondroitin sulfate proteoglycan-rich extracellular matrix and forming astrocytic scar,which limits the spread of inflam... After spinal cord injury(SCI),astrocytes gradually migrate to and surround the lesion,depositing chondroitin sulfate proteoglycan-rich extracellular matrix and forming astrocytic scar,which limits the spread of inflammation but hinders axon regeneration.Meanwhile,microglia gradually accumulate at the lesion border to form microglial scar and can polarize to generate a pro-inflammatory M1 phenotype or an anti-inflammatory M2 phenotype.However,the effect of microglia polarization on astrocytes is unclear.Here,we found that both microglia(CX3 CR1^(+))and astrocytes(GFAP^(+))gathered at the lesion border at 14 days post-injury(dpi).The microglia accumulated along the inner border of and in direct contact with the astrocytes.M1-type microglia(i NOS^(+)CX3 CR1^(+))were primarily observed at 3 and 7 dpi,while M2-type microglia(Arg1^(+)CX3 CR1^(+))were present at larger numbers at 7 and 14 dpi.Transforming growth factor-β1(TGFβ1)was highly expressed in M1 microglia in vitro,consistent with strong expression of TGFβ1 by microglia in vivo at 3 and 7 dpi,when they primarily exhibited an M1 phenotype.Furthermore,conditioned media from M1-type microglia induced astrocytes to secrete chondroitin sulfate proteoglycan in vitro.This effect was eliminated by knocking down sex-determining region Y-box 9(SOX9)in astrocytes and could not be reversed by treatment with TGFβ1.Taken together,our results suggest that microglia undergo M1 polarization and express high levels of TGFβ1 at 3 and 7 dpi,and that M1-type microglia induce astrocytes to deposit chondroitin sulfate proteoglycan via the TGFβ1/SOX9 pathway.The study was approved by the Institutional Animal Care and Use Committee of Anhui Medical University,China(approval No.LLSC20160052)on March 1,2016. 展开更多
关键词 ASTROCYTES astrocytic scar chondroitin sulfate proteoglycan M1/M2 polarization MICROGLIA sex-determining region Y-box 9 spinal cord injury transforming growth factor-β1
下载PDF
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury 被引量:10
3
作者 Chun Zhang Xijing He +1 位作者 Haopeng Li Guoyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期965-974,共10页
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op... As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury stem cells chondroitin sulfate proteoglycans ASTROCYTES glial scar chondroitinase ABC bone marrow mesenchymal stem cells TRANSPLANTATION chemicalbarrier NEUROREGENERATION
下载PDF
Chondroitin sulfate-mediated albumin corona nanoparticles for the treatment of breast cancer 被引量:3
4
作者 Tiantian Tan Qin Yang +6 位作者 Dan Chen Juan Zhao Ling Xiang Jiaxing Feng Xu Song Yao Fu Tao Gong 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2021年第4期508-518,共11页
Chondroitin sulfate-mediated albumin corona nanoparticles were readily prepared without any chemical reaction,and their active tumor targeting and therapeutic effects were examined.Negatively charged chondroitin sulfa... Chondroitin sulfate-mediated albumin corona nanoparticles were readily prepared without any chemical reaction,and their active tumor targeting and therapeutic effects were examined.Negatively charged chondroitin sulfate(CS)and positively charged doxorubicin(DOX)self-assembled into nanoparticles(CS-DOX-NPs)via electrostatic interactions.Bovine serum albumin(BSA)was then adsorbed on the surface of CS-DOX-NPs to form albumin corona nanoparticles(BC-DOX-NPs)protected from endogenous proteins.Due to the dual effect of BSA and CS,BC-DOX-NPs interacted with the gp60,SPARC and CD44 receptors on tumor cells,facilitating their rapid and efficient transcytosis and improving their accumulation and uptake within tumor tissues.The simultaneous presence of BSA and CS also allowed BC-DOX-NPs to target CD44 efficiently,leading to greater cellular uptake and cytotoxicity against 4 T1 cells than CS-DOX-NPs or free DOX.Intravenous injection of BCDOX-NPs into orthotopic 4 T1 tumor-bearing mice led to greater drug accumulation at the tumor site than with CS-DOX-NPs or free DOX,resulting in significant inhibition of tumor growth and lower exposure of major organs to the drug. 展开更多
关键词 chondroitin sulfate Bovine serum albumin SELF-ASSEMBLY DOXORUBICIN Cancer therapy
下载PDF
Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury 被引量:4
5
作者 Scott M.Dyck Soheila Karimi-Abdolrezaee 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第12期2080-2082,共3页
Spinal cord injury (SCI) elicits a robust inflammatory response that is a hallmark of the secondary injury mechanisms. Neuroinflammation is orchestrated initially by the response of resident astrocytes and microglia... Spinal cord injury (SCI) elicits a robust inflammatory response that is a hallmark of the secondary injury mechanisms. Neuroinflammation is orchestrated initially by the response of resident astrocytes and microglia to injury, which subsequently facilitates the recruitment of peripheral immune cells into the SCI lesion (Orr and Gensel, 2018). This inflammatory response contributes to cell death and tissue degeneration through the production of pro-inflammatory cytokines and chemokines, free radicals and proteolytic enzymes. However, neuroinflammatory cells also play beneficial regulatory role in repair mechanisms after SCI by adopting a reparative and wound healing phenotype (Orr and Gensel, 2018; Tran et al., 2018). Hence, understanding the underlying mechanisms by which immune cells are reg- ulated within the microenvironment of injury would aid in harnessing the reparative potential of inflammation following SCI. 展开更多
关键词 Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury PTP SCI
下载PDF
Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture 被引量:2
6
作者 Jingyu Jin Sharada Tilve +3 位作者 Zhonghai Huang Libing Zhou Herbert M.Geller Panpan Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期289-297,共9页
As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regen... As one major component of extracellular matrix (ECM) in the central nervous system, chondroitin sul- fate proteoglycans (CSPGs) have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite out- growth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN) culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, in- cluding cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concen- tration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM) which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth. 展开更多
关键词 chondroitin sulfate proteoglycans cell adhesion neurite growth interference reflection microscopy neural regeneration
下载PDF
Effects of chondroitin sulfate on alteration of actin cytoskeleton in rats with acute necrotizing pancreatitis 被引量:2
7
作者 He, Zhong-Ye Guo, Ren-Xuan 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2007年第5期537-543,共7页
BACKGROUND: In experimental acute pancreatitis, a large amount of reactive oxygen species are produced, and in turn cytoskeletal changes may be induced in pancreatic tissue. These changes contribute to an imbalance of... BACKGROUND: In experimental acute pancreatitis, a large amount of reactive oxygen species are produced, and in turn cytoskeletal changes may be induced in pancreatic tissue. These changes contribute to an imbalance of digestive enzyme segregation, transport, exocytosis and activation, resulting in cell injury. In this study, we assessed the effects of chondroitin sulfate (CS) on attenuation of oxidative damage and protection of F-actin in rats with acute necrotizing pancreatitis (ANP). METHODS: Ninety male Wistar rats were divided randomly into three groups. Group A was infused with 5% sodium taurocholate; group B was treated with CS; and group C served as control. Rats from the three groups were killed at 1, 3 or 8 hours. The levels were measured of malonyl dialdehyde (MDA), total superoxide dismutase (SOD), glutathione synthetase (GSH), serum amylase (SAM) and adenosine triphosphate (ATP). F-actin immunostained with rhodamine-phalloidin was analyzed using a confocal laser scanning system and the content of F-actin protein was determined. RESULTS: The levels of SAM increased in groups A and B, whereas the levels of GSH, SOD and ATP in group A decreased markedly during pancreatitis, and MDA increased significantly. The levels of GSH, SOD and ATP in group B were higher than those in group A, but the level of MDA was lower than in group A. At the same time, ANP resulted in early disruption of the cytoskeleton with dramatic changes and a loss of F-actin. Administration of CS moderated the damage to the actin cytoskeleton. CONCLUSIONS: Retrograde infusion of sodium taurocholate via the pancreatic duct may produce pancreatic necrosis and a marked increase in serum amylase activity, induce a severe depletion of ATP level, prime lipid peroxidation, and damage F-actin. Treatment with CS can ameliorate pancreatic cell conditions, limit cell membrane peroxidation, protect F-actin, and attenuate pancreatitis. 展开更多
关键词 chondroitin sulfate acute necrotizing pancreatitis reactive oxygen species filament actin
下载PDF
Preparation and Characterization of PD LIA/Chondroitin Sulfate/Chitosan Seaffold for Peripheral Nerve Regeneration 被引量:1
8
作者 XU Haixing YAN Yuhua +1 位作者 WAN Tao LI Shipu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期230-233,共4页
A novel bioactive and bioresorbable PDLLA/chondroitin sulfate/chitosan scaffold was prepared via layer-by-layer(LBL) electrostatic-self-assembly (ESA) and the thermally induced phase separation (TIPS) technique.... A novel bioactive and bioresorbable PDLLA/chondroitin sulfate/chitosan scaffold was prepared via layer-by-layer(LBL) electrostatic-self-assembly (ESA) and the thermally induced phase separation (TIPS) technique. Chondroitin sulfate and chitosan were alternately deposited on the activated PDLLA substrate. The deposition process was monitored by UV-Vis absorbance spectroscopy. After frozen and lyophilized, the scaffold was characterized by attenuated total reflection (ATR)-FT-IR, XPS, SEM and AFM. The results showed that the scaffold was modified uniformly with a dense inner layer with few detectable pores and a porous sponge outer layer with the pore size about 5 μm, there was an obvious across section and the average thickness of each layer was about 9.4 nm. 展开更多
关键词 PDLLA chondroitin sulfate CHITOSAN peripheral nerve
下载PDF
Physicochemical, structural characterization, and antioxidant activities of chondroitin sulfate from Oreochromis niloticus bones 被引量:1
9
作者 Jun Yang Mingyue Shen +3 位作者 Ting Wu Xianxiang Chen Huiliang Wen Jianhua Xie 《Food Science and Human Wellness》 SCIE CSCD 2023年第4期1102-1108,共7页
In this study,chondroitin sulfate was extracted from Oreochromis niloticus bones(OCS)and isolated to three fractions(OCS-1,OCS-2,and OCS-3).The physicochemical properties and structure characterization including monos... In this study,chondroitin sulfate was extracted from Oreochromis niloticus bones(OCS)and isolated to three fractions(OCS-1,OCS-2,and OCS-3).The physicochemical properties and structure characterization including monosaccharide,disaccharide compositions,molecular weight(Mw)of OCS were determined by HPAEC,HPLC-SAX,HPGPC,FT-IR spectra,and 1D/2D NMR.Moreover,their thermal properties,crystalline structure,and microstructure were also analyzed.Results showed that their Mw were between 10 kDa and 50 kDa.CS-6 was the predominant disaccharide unit in four OCS,and the CS-4/CS-6 ratios were close to CS from shark cartilage.Besides,the results of antioxidant activity showed that different fractions of OCS had a distinct DPPH radical,hydroxyl radical,and ABTS+radical scavenging activity.OCS-1 has the highest scavenging activities in DPPH and hydroxyl radical compared with other fractions,which showed a higher medicinal value.Those findings may lay some theoretical basis for the potential application development of OCS. 展开更多
关键词 Oreochromis niloticus by-products chondroitin sulfate Structural characterization ANTIOXIDANT
下载PDF
Preparation and Charactcrization of a Novel PDLLA/Chondroitin Sulfate/Chitosan Asymmetry Film
10
作者 闫玉华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期681-685,共5页
A novel bioactive and bioresorbable asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited ... A novel bioactive and bioresorbable asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly (ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflectic (ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT- IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer tayer. 展开更多
关键词 PDLLA chondroitin sulfate CHITOSAN asymmetry film
下载PDF
The relevance study of effective information between near infrared spectroscopy and chondroitin sulfate in ethanol precipitation process
11
作者 Lian Li Baoyang Ding +6 位作者 Qi Yang Shang Chen Huaying Ren Jinfeng Wang Hengchang Zang Fengshan Wang Lixuan Zang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期63-69,共7页
Near infrared spectroscopy(NIRS)is based on molecular overtone and combination vibrations.It is difficult to assign specific features under complicated system.So it is necessary to find the relevance between NIRS and ... Near infrared spectroscopy(NIRS)is based on molecular overtone and combination vibrations.It is difficult to assign specific features under complicated system.So it is necessary to find the relevance between NIRS and target compound.For this purpose,the chondroitin sulfate(CS)ethanol precipitation process was selected as the research model,and 90 samples of 5 different batches were collected and the content of CS was determined by modifed carbazole method.The relevance between NIRS and CS was studied throughout optical pathlength,pretreat ment methods and variables selection methods.In conclusion,the first derivative with Savitzky--Golay(SG)smoothing was selected as the best pretreatment,and the best spectral region was selected using interval partial least squares(iPLS)method under 1 mm optical cell.A multivariate cali-bration model was established using PLS algorithm for determining the content of CS,and the root mean square error of prediction(RMSEP)is 3.934gL-1.This method will have great potential in process analytical technology in the future. 展开更多
关键词 chondroitin sulfate near infrared spectroscopy variable selection pathlength
下载PDF
Partial Hydrolysis of the Fucosylated Chondroitin Sulfate from Sea Cucumber Isostichopus badionotus and Its Mechanism
12
作者 陈士国 李国云 +1 位作者 叶兴乾 薛长湖 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第10期1455-1463,共9页
The method for preparing low molecular weight fucosylated chondroitin sulfate from sea cucumber lsostichopus badionotus using partial acid hydrolysis was reported, and its hydrolysis mechanism was also investigated. T... The method for preparing low molecular weight fucosylated chondroitin sulfate from sea cucumber lsostichopus badionotus using partial acid hydrolysis was reported, and its hydrolysis mechanism was also investigated. The sea cucumber chondroitin sulfate FCS was hydrolyzed under different conditions (80℃3 h and 6 h), then isolated and purified on a Bio-P-4 geltration to prepare low molecular weight fractions (LMWF-FCS). The chemical compositions of LMWF-FCS showed the branched fucose (Fuc) was cleaved during acid hydrolysis process, whereas the mole ratio of acetyl-galactosamine (GalNAc) and glucuronic acid (GlcA) in the backbone remained the same, which indicated the backbone was a typical chondroitin sulfate structure. The disaccharide composition analysis of LMWF-FCS suggested that the sulfation patterns of GalNAc in the backbone chain changed and the substitution value was reduced. Furthermore, the 1D NMR analysis illustrated the branched-Fuc was cleaved during acid hydrolysis, but their substitution patterns were not influenced, which was distinct from the previous reports that the substitutions of branched-Fuc in FCS were easy to change. Simultaneously, the sulfation pattern of GalNAc in backbone chain changed obviously in the acid hydrolysis process. The anticoagulant activity in vitro illuminated the anticoagulant activity of the degradation products over time in the acid hydrolysis are gradually declined, but still kept good. Therefore, the LMWF-FCS prepared could be developed as a new anticoagulant and antithrombotic drug like low molecular weight heparin. 展开更多
关键词 sea cucumber chondroitin sulfate NMR partial acid hydrolysis ANTICOAGULANT
下载PDF
Optimization of the Formulation Process of Glucosamine Chondroitin Sulfate Tablets
13
作者 Jingkun XU Donghai CHU 《Agricultural Biotechnology》 CAS 2023年第1期94-97,共4页
[Objectives]This study was conducted to optimize the Formulation Process of glucosamine chondroitin sulfate tablets. [Methods] The orthogonal design with three levels was carried out with microcrystalline cellulose, c... [Objectives]This study was conducted to optimize the Formulation Process of glucosamine chondroitin sulfate tablets. [Methods] The orthogonal design with three levels was carried out with microcrystalline cellulose, calcium hydrophosphate and cross-linked polyvinylpyrrolidone as three factors to optimize the preparation process. [Results] When microcrystalline cellulose 200 mg/tablet, calcium hydrophosphate 150 mg/tablet, and cross-linked polyvinylpyrrolidone 80 mg/tablet were added, the angle of repose could meet the requirements of tablet pressing, and the dissolution could reach more than 95% in 30 min. The results of the orthogonal test showed that the dissolution effect of self-made tablets was faster than that of commercial products. [Conclusions] The glucosamine hydrochloride chondroitin sulfate tablets prepared by this prescription have better quality. 展开更多
关键词 Glucosamine chondroitin sulfate tablets Optimization of formulation process Orthogonal test
下载PDF
Chondroitin sulfate and glucosamine combination in patients with knee and hip osteoarthritis:A long-term observational study in Russia
14
作者 Alexander M Lila Lyudmila I Alekseeva +4 位作者 Andrey A Baranov Elena A Taskina Natalya G Kashevarova Natalia A Lapkina Evgeny A Trofimov 《World Journal of Orthopedics》 2023年第6期443-457,共15页
BACKGROUND Oral treatment of glucosamine(GA) combined with chondroitin sulfate(CS) was reportedly effective for pain relief and function improvement in osteoarthritis patients with moderate to severe knee pain in clin... BACKGROUND Oral treatment of glucosamine(GA) combined with chondroitin sulfate(CS) was reportedly effective for pain relief and function improvement in osteoarthritis patients with moderate to severe knee pain in clinical trials. While the effectiveness of GA and CS on both clinical and radiological findings has been demonstrated, only a few high-quality trials exist. Therefore, controversy regarding their effectiveness in real-world clinical practice remains.AIM To investigate the impact of GA + CS on clinical outcomes of patients with knee and hip osteoarthritis in routine clinical practice.METHODS A multicenter prospective observational cohort study included 1102 patients of both genders with knee or hip osteoarthritis(Kellgren & Lawrence grades Ⅰ-Ⅲ) in 51 clinical centers in the Russian Federation from November 20, 2017, to March 20,2020, who had started to receive oral capsules of glucosamine hydrochloride 500 mg and CS 400mg according to the approved patient information leaflet starting from 3 capsules daily for 3 wk,followed by a reduced dosage of 2 capsules daily before study inclusion(minimal recommended treatment duration is 3-6 mo). Changes in subscale scores [Pain, Symptoms, Function, and Quality of Life(QOL)] of the Knee Injury and Osteoarthritis Outcome Score(KOOS)/Hip Disability and Osteoarthritis Outcome Score(HOOS) questionnaires during the observational period(up to 54-64wk with a total of 4 visits). Patients’ treatment satisfaction, data on the combined oral use of glucosamine hydrochloride and CS, concomitant use of non-steroidal anti-inflammatory drugs(NSAIDs), and adverse events(AEs) were also evaluated.RESULTS A total of 1102 patients with knee and hip osteoarthritis were included in the study. The mean patient age was 60.4 years, most patients were women(87.8%), and their average body mass index was 29.49 kg/m2. All subscale scores(Pain, Symptoms, Function, and QOL) of the KOOS and HOOS demonstrated clinically and statistically significant improvements. In patients with knee osteoarthritis, the mean score increases from baseline to the end of Week 64 were 22.87, 20.78,16.60, and 24.87 on Pain, Symptoms, Physical Function(KOOS-PS), and QOL subscales(P < 0.001for all), respectively. In patients with hip osteoarthritis, the mean score increases were 22.81, 19.93,18.77, and 22.71 on Pain, Symptoms, Physical Function(HOOS-PS), and QOL subscales(P < 0.001for all), respectively. The number of patients using any NSAIDs decreased from 43.1% to 13.5%(P < 0.001) at the end of the observation period. Treatment-related AEs occurred in 2.8% of the patients and mainly included gastrointestinal disorders [25 AEs in 24(2.2%) patients]. Most patients(78.1%) were satisfied with the treatment.CONCLUSION Long-term oral GA + CS was associated with decreased pain, reduced concomitant NSAID therapy, improved joint function and QOL in patients with knee and hip osteoarthritis in routine clinical practice. 展开更多
关键词 GLUCOSAMINE chondroitin sulfate Knee osteoarthritis Hip osteoarthritis Knee injury and osteoarthritis outcome score Hip disability and osteoarthritis outcome score
下载PDF
Structure and function of aggrecan 被引量:31
15
作者 CHRIS KIANI, LIWEN CHEN, YAO JIONG WU, ALBERT J YEE, BURTON B YANG, Sunnybrook and Women’s College Health Sciences Centre and Department of Laboratory Medicine and Patobiology, 2 Department of Surgeny, Faculty of Medicine, University of Toronto, Canada 《Cell Research》 SCIE CAS CSCD 2002年第1期19-32,共14页
Aggrecan is the major proteoglycan in the articular cartilage. This molecule is important in the proper functioning of articular cartilage because it provides a hydrated gel structure (via its interaction with hyaluro... Aggrecan is the major proteoglycan in the articular cartilage. This molecule is important in the proper functioning of articular cartilage because it provides a hydrated gel structure (via its interaction with hyaluronan and link protein) that endows the cartilage with load-bearing properties. It is also crucial in chondroskeletal morphogenesis during development. Aggrecan is a multimodular molecule expressed by chondrocytes. Its core protein is composed of three globular domains (G1, G2, and G3) and a large extended region (CS) between G2 and G3 for glycosaminoglycan chain attachment. G1 comprises the amino terminus of the core protein. This domain has the same structural motif as link protein. Functionally, the G1 domain interacts with hyaluronan acid and link protein, forming stable ternary complexes in the extracellular matrix. G2 is homologous to the tandem repeats of G1 and of link protein and is involved in product processing. G3 makes up the carboxyl terminus of the core protein. It enhances glycosaminoglycan modification and product secretion. Aggrecan plays an important role in mediating chondrocyte-chondrocyte and chondrocyte-matrix interactions through its ability to bind hyaluronan. 展开更多
关键词 PROTEOGLYCAN chondroitin sulfate GLYCOSAMINOGLYCAN G1 domain G3 domain.
下载PDF
Epidural electrical stimulation for spinal cord injury 被引量:9
16
作者 Elliot H.Choi Sandra Gattas +4 位作者 Nolan J.Brown John D.Hong Joshua N.Limbo Alvin Y.Chan Michael Y.Oh 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第12期2367-2375,共9页
A long-standing goal of spinal cord injury research is to develop effective repair strategies,which can restore motor and sensory functions to near-normal levels.Recent advances in clinical management of spinal cord i... A long-standing goal of spinal cord injury research is to develop effective repair strategies,which can restore motor and sensory functions to near-normal levels.Recent advances in clinical management of spinal cord injury have significantly improved the prognosis,survival rate and quality of life in patients with spinal cord injury.In addition,a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury.Such efforts enabled the development of pharmacologic agents,biomaterials and stem-cell based therapy.Despite these efforts,there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord.These challenges led to an increased focus on another therapeutic approach,namely neuromodulation.In multiple animal models of spinal cord injury,epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function.Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury.However,most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury.Thus,subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters.Here,we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury.We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury. 展开更多
关键词 central nervous system chondroitin sulfate proteoglycans epidural electrical stimulation glial scar GLIOSIS neural activity NEUROMODULATION OLIGODENDROCYTE spinal cord injury
下载PDF
Proteoglycans: Road Signs for Neurite Outgrowth 被引量:6
17
作者 Justin A.Beller Diane M.Snow 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第4期343-355,共13页
Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central n... Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the iniured central nervous system. 展开更多
关键词 chondroitin sulfate proteoglycans heparan sulfate proteoglycans GLYCOSAMINOGLYCANS protein core extracellular matrix neuronal growth cones axon outgrowth and regeneration spinalcord injury glial scar tissue culture
下载PDF
Dissecting the multifactorial nature of demyelinating disease 被引量:2
18
作者 Karolina Kucharova William B.Stallcup 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期628-632,共5页
Chondroitin sulfate proteoglycan-4(CSPG4) is a surface component of two key cell types(oligodendrocyte progenitor cells(OPCs) and myeloid cells) present in lysolecithin-induced lesions in mouse spinal cord.Two t... Chondroitin sulfate proteoglycan-4(CSPG4) is a surface component of two key cell types(oligodendrocyte progenitor cells(OPCs) and myeloid cells) present in lysolecithin-induced lesions in mouse spinal cord.Two types of CSPG4 manipulations have been used to study the roles of these cells in myelin damage and repair:(1) OPC and myeloid-specific ablation of CSPG4,and(2) transplantation of enhanced green fluorescent protein(EGFP)-labeled progenitors to distinguish between bone marrow-derived macrophages and resident microglia.Ablation of CSPG4 in OPCs does not affect myelin damage,but decreases myelin repair,due to reduced proliferation of CSPG4-null OPCs that diminishes generation of mature oligodendrocytes for remyelination.Ablation of CSPG4 in myeloid cells greatly decreases recruitment of macrophages to spinal cord lesions,resulting in smaller initial lesions,but also in significantly diminished myelin repair.In the absence of macrophage recruitment,OPC proliferation is greatly impaired,again leading to decreased generation of myelinating oligodendrocytes.Macrophages may promote OPC proliferation via phagocytosis of myelin debris and/or secretion of factors that stimulate OPC mitosis.Microglia are not able to substitute for macrophages in promoting OPC proliferation.An additional feature of lesions in myeloid-specific CSPG4 null mice is the persistence of poorly-differentiated platelet-derived growth factor receptor α(PDGFRα) + macrophages that may prolong damage. 展开更多
关键词 myelin damage myelin repair chondroitin sulfate proteoglycan 4 oligodendrocyte progenitors MACROPHAGES MICROGLIA Cre-Lox technology bone marrow transplantation
下载PDF
Melatonin combined with exercise cannot alleviate cerebral injury in a rat model of focal cerebral ischemia/reperfusion injury 被引量:2
19
作者 Seunghoon Lee Jinhee Shin +8 位作者 Minkyung Lee Yunkyung Hong Sang-Kil Lee Youngjeon Lee Tserentogtokh Lkhagvasuren Dong-Wook Kim Young-Ae Yang Kyu-Tae Chang Yonggeun Hong 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期993-999,共7页
Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also al... Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also alleviate ischemic brain damage. In this study, adult rats were subjected to right middle cerebral artery occlusion after receiving 10 mg/kg melatonin or vehicle subcutaneously twice daily for 14 days. Forced exercise using an animal treadmill was performed at 20 m/min for 30 minutes per day for 6 days prior to middle cerebral artery occlusion. After middle cerebral artery occlusion, each rat received melatonin combined with exercise, melatonin or exercise alone equally for 7 days until sacrifice. Interestingly, rats receiving melatonin combined with exercise exhibited more severe neurological deficits than those receiving melatonin or exercise alone. Hypoxia-inducible factor la mRNA in the brain tissue was upregulated in rats receiving melatonin combined with exercise. Similarly, microtubule associated protein-2 mRNA expression was significantly upregulated in rats receiving melatonin alone. Chondroitin sulfate proteoglycan 4 (NG2) mRNA expression was significantly decreased in rats receiving melatonin combined with exercise as well as in rats receiving exercise alone. Furthermore, neural cell loss in the primary motor cortex was significantly reduced in rats receiving melatonin or exercise alone, but the change was not observed in rats receiving melatonin combined with exercise. These findings suggest that excessive intervention with melatonin, exercise or their combination may lead to negative effects on ischemia/reperfusion-induced brain damage. 展开更多
关键词 wfocal cerebral ischemiaJreperfusion MELATONIN EXERCISE neurological function brain tissue loss microtubule associated protein-2 chondroitin sulfate proteoglycan 4 NG2 hypoxia-inducible factor1 alpha neural regeneration
下载PDF
Diacerein protects against iodoacetate-induced osteoarthritis in the femorotibial joints of rats 被引量:1
20
作者 Achint Jain Royana Singh +1 位作者 Saurabh Singh Sanjay Singh 《The Journal of Biomedical Research》 CAS CSCD 2015年第5期405-413,共9页
The present study was undertaken to investigate the effect of diacerein on the histopathology of articular cartilage and subchondral bone of the femorotibial joint in rats. Osteoartbritis was induced in rats after sin... The present study was undertaken to investigate the effect of diacerein on the histopathology of articular cartilage and subchondral bone of the femorotibial joint in rats. Osteoartbritis was induced in rats after single intra-articular injection of sodium iodoacetate. Rats were sacrificed 1, 2, 4, and 8 weeks post intra-articular injection to evaluate the progression of histopathogenesis of osteoarthritis. Diacerein was orally administered (15 mg/kg) once daily post 1 and 2 weeks of iodoacetate injection in two groups, respectively, for up to 12 weeks. Articular cartilage and sub- chondral bone of the rats of both groups were examined after 8 and 12 weeks, respectively. Quantitative histological analyses were performed by scoring these sections as per the OARSI system. Chondroitin sulfate was also estimated in articular cartilage by decrease in absorbance of methylene blue on complexation with chondroitin sulfate using a spectrophotometer. Intra-articular injection of iodoacetate induced loss of articular cartilage with progressive sub- chondral bone sclerosis and degeneration. Based on histopathological and biochemical findings, diacerein treatment showed chondroprotective effect. Furthermore, the chondroprotective effect of diacerein was found to be more pro- nounced after 12 weeks as compared to 8 weeks in both cases (i.e., post 1 and 2 weeks of iodoacetate injection). Similar results were observed by investigation of chondroitin sulfate during biochemical study, showing the chon- droprotective effect. In conclusion, diacerein exhibits chondroprotective effect in rats with late onset of action. 展开更多
关键词 DIACEREIN OSTEOARTHRITIS articular cartilage chondroitin sulfate HISTOPATHOLOGY
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部