A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>...A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>: <em>E</em>(<em>G</em>) → {1, 2, …, <em>k</em>} such that no two adjacent edges receive the same color. A neighbor sum distinguishing <em>k</em>-edge coloring of <em>G</em> is a proper <em>k</em>-edge coloring of <em>G</em> such that <img src="Edit_28f0a24c-7d3f-4bdc-b58c-46dfa2add4b4.bmp" alt="" /> for each edge <em>uv</em> ∈ <em>E</em>(<em>G</em>). The neighbor sum distinguishing index of a graph <em>G</em> is the least integer <em>k</em> such that <em>G </em>has such a coloring, denoted by <em>χ’</em><sub>Σ</sub>(<em>G</em>). Let <img src="Edit_7525056f-b99d-4e38-b940-618d16c061e2.bmp" alt="" /> be the maximum average degree of <em>G</em>. In this paper, we prove <em>χ</em>’<sub>Σ</sub>(<em>G</em>) ≤ max{9, Δ(<em>G</em>) +1} for any normal graph <em>G</em> with <img src="Edit_e28e38d5-9b6d-46da-bfce-2aae47cc36f3.bmp" alt="" />. Our approach is based on the discharging method and Combinatorial Nullstellensatz.展开更多
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ...A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△.展开更多
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each e...A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.展开更多
Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for ...Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.展开更多
Pilsniak and Wozniak put forward the concept of neighbor sum distinguishing(NSD)total coloring and conjectured that any graph with maximum degreeΔadmits an NSD total(Δ+3)-coloring in 2015.In 2016,Qu et al.showed tha...Pilsniak and Wozniak put forward the concept of neighbor sum distinguishing(NSD)total coloring and conjectured that any graph with maximum degreeΔadmits an NSD total(Δ+3)-coloring in 2015.In 2016,Qu et al.showed that the list version of the conjecture holds for any planar graph withΔ≥13.In this paper,we prove that any planar graph withΔ≥7 but without 6-cycles satisfies the list version of the conjecture.展开更多
Let G =(V, E) be a graph and Ф : V tA E → {1, 2,..., k) be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total colo...Let G =(V, E) be a graph and Ф : V tA E → {1, 2,..., k) be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring Ф is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv∈ E(G). We say that Фis neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k 〉 △(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree A(G) and maximum average degree mad(G) has ch''∑(G) 〈 △(G) + 3 (where ch''∑(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair (k, m) ∈ {(6, 4), (5, 18/5), (4, 16)} such that △(G) 〉 k and mad (G) 〈 m.展开更多
A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edge...A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edges incident to v.A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G),f(u)≠f(v).Byχ’_∑(G),we denote the smallest value k in such a coloring of G.Let mad(G)denote the maximum average degree of a graph G.In this paper,we prove that every normal graph with mad(G)<10/3 andΔ(G)≥8 admits a(Δ(G)+2)-neighbor sum distinguishing edge coloring.Our approach is based on the Combinatorial Nullstellensatz and discharging method.展开更多
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distingu...Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.展开更多
文摘A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>: <em>E</em>(<em>G</em>) → {1, 2, …, <em>k</em>} such that no two adjacent edges receive the same color. A neighbor sum distinguishing <em>k</em>-edge coloring of <em>G</em> is a proper <em>k</em>-edge coloring of <em>G</em> such that <img src="Edit_28f0a24c-7d3f-4bdc-b58c-46dfa2add4b4.bmp" alt="" /> for each edge <em>uv</em> ∈ <em>E</em>(<em>G</em>). The neighbor sum distinguishing index of a graph <em>G</em> is the least integer <em>k</em> such that <em>G </em>has such a coloring, denoted by <em>χ’</em><sub>Σ</sub>(<em>G</em>). Let <img src="Edit_7525056f-b99d-4e38-b940-618d16c061e2.bmp" alt="" /> be the maximum average degree of <em>G</em>. In this paper, we prove <em>χ</em>’<sub>Σ</sub>(<em>G</em>) ≤ max{9, Δ(<em>G</em>) +1} for any normal graph <em>G</em> with <img src="Edit_e28e38d5-9b6d-46da-bfce-2aae47cc36f3.bmp" alt="" />. Our approach is based on the discharging method and Combinatorial Nullstellensatz.
基金Supported by the Natural Science Foundation of Gansu Province(3ZS051-A25-025)
文摘A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△.
基金Supported by National Natural Science Foundation of China(Grant Nos.11371355,11471193,11271006,11631014)the Foundation for Distinguished Young Scholars of Shandong Province(Grant No.JQ201501)the Fundamental Research Funds of Shandong University and Independent Innovation Foundation of Shandong University(Grant No.IFYT14012)
文摘A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.
基金Supported by the National Natural Science Foundation of China(11471193,11631014)the Foundation for Distinguished Young Scholars of Shandong Province(JQ201501)+1 种基金the Fundamental Research Funds of Shandong UniversityIndependent Innovation Foundation of Shandong University(IFYT14012)
文摘Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.
基金Supported by National Natural Science Foundation of China(Grant Nos.11871397,11671320 and U1803263)the Fundamental Research Funds for the Central Universities(Grant No.3102019ghjd003)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JM-083)Shangluo University Key Disciplines Project(Discipline name Mathematics)。
文摘Pilsniak and Wozniak put forward the concept of neighbor sum distinguishing(NSD)total coloring and conjectured that any graph with maximum degreeΔadmits an NSD total(Δ+3)-coloring in 2015.In 2016,Qu et al.showed that the list version of the conjecture holds for any planar graph withΔ≥13.In this paper,we prove that any planar graph withΔ≥7 but without 6-cycles satisfies the list version of the conjecture.
基金the National Natural Science Foundation of China(11371355,11471193)Foundation for Distinguished Young Scholars of Shandong Province(JQ201501)+2 种基金the Natural Science Foundation of Shandong Province(ZR2013AM001)the Fundamental Research Funds of Shandong UniversityIndependent Innovation Foundation of Shandong University(IFYT14012)
文摘Let G =(V, E) be a graph and Ф : V tA E → {1, 2,..., k) be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring Ф is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv∈ E(G). We say that Фis neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k 〉 △(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree A(G) and maximum average degree mad(G) has ch''∑(G) 〈 △(G) + 3 (where ch''∑(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair (k, m) ∈ {(6, 4), (5, 18/5), (4, 16)} such that △(G) 〉 k and mad (G) 〈 m.
基金Supported by the Natural Science Foundation of Shandong Provence(Grant Nos.ZR2018BA010,ZR2016AM01)the National Natural Science Foundation of China(Grant No.11571258)。
文摘A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edges incident to v.A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G),f(u)≠f(v).Byχ’_∑(G),we denote the smallest value k in such a coloring of G.Let mad(G)denote the maximum average degree of a graph G.In this paper,we prove that every normal graph with mad(G)<10/3 andΔ(G)≥8 admits a(Δ(G)+2)-neighbor sum distinguishing edge coloring.Our approach is based on the Combinatorial Nullstellensatz and discharging method.
基金supported by National Natural Science Foundation of China(Grant Nos.11101243 and 11371355)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100131120017)the Scientific Research Foundation for the Excellent Middle Aged and Youth Scientists of Shandong Province of China(Grant No.BS2012SF016)
文摘Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.