Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ...Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.展开更多
文摘Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.