The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-e...The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.展开更多
The refolding of the reduced/denatured insulin from bovine pancreas as the model protein was investigated with weak anion exchange chromatography (WAX) coupled with MALDI-TOF MS. The results indicated that the disul...The refolding of the reduced/denatured insulin from bovine pancreas as the model protein was investigated with weak anion exchange chromatography (WAX) coupled with MALDI-TOF MS. The results indicated that the disulfide bonds almost cannot be formed correctly with the common mobile phase by WAX. However, with the urea gradient elution and in the presence of GSSG/ Cyst as the ratio 1:6 in the mobile phase employed, the disulfide exchange of reduced/denatured insulin can be accelerated resulting in forming the correct three disulfide bonds. The protein refolding efficiency of reduced/denatured insulin can be increased from 3 % to 34%. The effects of urea gradient and the oxidant and reductant groups, such as GSSG/GSH, Cyst, and GSSG/Cyst, on the forming the disulfide bonds of reduced/denatured insulin were investigated in detail. The results were further tested by the separation of the WAX fraction of reduced/denatured insulin with RPLC and MALDI-TOF MS.展开更多
[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by ga...[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.展开更多
A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted wi...A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted with the dichloromethane/methanol (60/40). The high performance liquid chromatography (HPLC) system consisted of a clean-up column and an analytical column, which were connected with two six-port switching valves. Detection of petroleum sulfonates was available and repeatable. This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.展开更多
The separation of Co 2+ from Zn 2+ , Cd 2+ by anion exchange chromatography was discussed. The chromatographic column containing anion resin 201×7 which was saturated with a solution of ammonium chloride. The eff...The separation of Co 2+ from Zn 2+ , Cd 2+ by anion exchange chromatography was discussed. The chromatographic column containing anion resin 201×7 which was saturated with a solution of ammonium chloride. The effects of the eluant acidity and eluant composition on the separation were investigated. The results indicate that this anion exchange chromatography is suitable to the separation of Co 2+ from Zn 2+ , Cd 2+ , and the condition of separation is simple and convenient. When the column is saturated with NH 4Cl solution (2.0 mol/L, pH=4.0), the separation can be completed effectively. Zn 2+ and Cd 2+ can also be separa ted when different eluants are used and the pure solution with high concentration of Zn 2+ , Cd 2+ respectively can be obtained ea sily.展开更多
The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appear...The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.展开更多
A La^3+-Cu/Pt modified electrode was fabricated by electrodepositing process in CuS04 solution by adding a small amount of lanthium compound, and it was employed for direct current (DC) amperometric detection of sp...A La^3+-Cu/Pt modified electrode was fabricated by electrodepositing process in CuS04 solution by adding a small amount of lanthium compound, and it was employed for direct current (DC) amperometric detection of spectinomycin by anion-exchange chromatography. Without derivatization, this method can simultaneously determine the main component and impurities in spectinomycin pharmaceutical raw material. Ease of preparation, being applied in DC detection mode and good catalytic stability confirmed the interests of this modified electrode as amperometric sensor for the determination of spectinomycin.展开更多
Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelect...Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography展开更多
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co...The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).展开更多
In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mai...In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.展开更多
In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Sc...In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Scientific C18 column (250 mm×4.6 mm, 5 μm) as the chromatographic column and acetonitrile and water as the mobile phase, and the excitation wavelength and emission wavelength of fluorescence detector were 286 and 430 nm, respectively. The response was high, and the linear range was 0.5-10.0 ng/ml. The lowest limit of detection was 0.11 ng/ml, and the average recovery was 92.5%. This method is suitable for quantitative analysis of benzo[a]pyrene content in edible oil.展开更多
Cation-exchange high-performance liquid chromatography(CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It...Cation-exchange high-performance liquid chromatography(CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It's versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique.展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and inso...The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.展开更多
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purificati...L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.展开更多
The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflo...The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflow-feeding mode,since the flow pattern of the fluid in the reactor is closer to plug flow.The result of dynamic experiment conducted in ion-exchange of tungsten metallurgy is as good as that in reaction engineering of ion-exchange column.Whether downflow-feeding or upflow-feeding mode is adopted,breakthrough time decreases when solution concentration increases.Upflow-feeding mode has longer breakthrough time and greater improvement in adsorption capacity especially with high WO3 concentration in ion-exchange.展开更多
Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile ph...Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile phase was 18 mmol L -1 kH 2PO 4 adjusted to pH 2.25 with phosphoric acid and the flow rate was 0.3 mL min -1 . The analytical column was a reversed phase silica based C 18 column (Shim pack CLC ODS). The root exudates were collected through submerging the whole root system into aerated deionized water for 2 hours. The filtered exudate solutions were concentrated to dryness by rotary evaporation at 40 °C, dissolved in 10 mL mobile phase. The chromatographic conditions of organic acid determination were analyzed. The results showed that there was a high selectivity and sensitivity in the organic acid determination by reversed phase high performance liquid chromatography. Coefficients of variation for organic acid determination were lower than 10% except lactic acid. The recoveries were consistently between 80.1% to 108.3%. Detection limits were approximately 0.05 to 4.5 mg L -1 for organic acids except succinic acid with the detection limit of 7.0 mg L -1 . Phosphorus deficiency may contribute to the release of organic acids in soybean root exudates especially malic, lactic and citric acids.展开更多
The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is ...The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.展开更多
The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation met...The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation method was proposed,and a pulsed nuclide automated separation device was developed,alongside a new chromatographic column.The length of this chromatographic column was 10 m,with an internal warp of 3 mm and a packing size of 1 mm,while the total separation units of the column reached 12,250.The most favorable conditions for the separation of nuclides were then obtained through optimizing the separation conditions of the device:Sample pH in the column=2,sample injection flow rate=5.698 mL/min,chromatographic column heating temperature=60℃.Separation experiments were also carried out for uranium,europium,and sodium ions in mixed solutions;uranium and sodium ions in water samples from the Ganjiang River;and uranium,sodium,and magnesium ions from seawater samples.The separation factors between the different nuclei were then calculated based on the experimental data,and a formula for the separation level was derived.The experimental results showed that the separation factor in the mixed solution of uranium and europium(1:1)was 1.088,while achieving the initial separation of uranium and europium theoretically required a 47-stage separation.Considering the separation factor of 1.50for the uranium and sodium ions in water samples from the Ganjiang River,achieving the initial separation of uranium and sodium ions would have theoretically required at least a 21-stage separation.Furthermore,for the seawater sample separation experiments,the separation factor of uranium and sodium ions was 1.2885;therefore,more than 28 stages of sample separation would be required to achieve uranium extraction from seawater.The novel pulsed liquid chromatography method proposed in this study was innovative in terms of uranium separation and enrichment,while expanding the possibilities of extracting uranium from seawater through chromatography.展开更多
文摘The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.
基金supported by the National 863 Program(No.2006AA02Z227)the Foundation of Key Subject Construct of Analytical Chemistry in Shaanxi Provincethe Foundation of Key Laboratory of Modem Separation Science in Shaanxi Province(No.05JS62).
文摘The refolding of the reduced/denatured insulin from bovine pancreas as the model protein was investigated with weak anion exchange chromatography (WAX) coupled with MALDI-TOF MS. The results indicated that the disulfide bonds almost cannot be formed correctly with the common mobile phase by WAX. However, with the urea gradient elution and in the presence of GSSG/ Cyst as the ratio 1:6 in the mobile phase employed, the disulfide exchange of reduced/denatured insulin can be accelerated resulting in forming the correct three disulfide bonds. The protein refolding efficiency of reduced/denatured insulin can be increased from 3 % to 34%. The effects of urea gradient and the oxidant and reductant groups, such as GSSG/GSH, Cyst, and GSSG/Cyst, on the forming the disulfide bonds of reduced/denatured insulin were investigated in detail. The results were further tested by the separation of the WAX fraction of reduced/denatured insulin with RPLC and MALDI-TOF MS.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei Province.
文摘[Objectives]This study was conducted to purify mutton samples by gel permeation chromatography(GPC).[Methods]Fourteen organophosphorus pesticide residues in samples were qualitatively and quantitatively analyzed by gas chromatography-mass spectrometry(GC-MS)in selective ion scanning mode(SIM).[Results]The organophosphorus pesticide standard solutions showed good linearity in the mass concentration range of 0.1-10.0μg/ml with correlation coefficients(r)not lower than 0.999,and the detection limits(S=3 N)ranged from 0.01 to 0.05 mg/kg.The average recovery values were in the range of 80.2%-99.7%,with relative standard deviations(RSDs,n=3)in the range of 1.8%-6.3%,at the addition levels of 0.5,1.0 and 2.0 mg/kg.[Conclusions]The method is simple,sensitive and accurate,and can be used for the determination of organophosphorus pesticide residues in mutton.
基金the National Nature Science Foundation of China(No.20675085)the support from the Program of the Light in China's Western Region(2003)the Province Nature Science Foundation of Gansu(No.3ZS041-A25-23).
文摘A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted with the dichloromethane/methanol (60/40). The high performance liquid chromatography (HPLC) system consisted of a clean-up column and an analytical column, which were connected with two six-port switching valves. Detection of petroleum sulfonates was available and repeatable. This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.
文摘The separation of Co 2+ from Zn 2+ , Cd 2+ by anion exchange chromatography was discussed. The chromatographic column containing anion resin 201×7 which was saturated with a solution of ammonium chloride. The effects of the eluant acidity and eluant composition on the separation were investigated. The results indicate that this anion exchange chromatography is suitable to the separation of Co 2+ from Zn 2+ , Cd 2+ , and the condition of separation is simple and convenient. When the column is saturated with NH 4Cl solution (2.0 mol/L, pH=4.0), the separation can be completed effectively. Zn 2+ and Cd 2+ can also be separa ted when different eluants are used and the pure solution with high concentration of Zn 2+ , Cd 2+ respectively can be obtained ea sily.
基金Supported by Shaan xi Provincial Scientific- Comm ittee( 96 H0 9)
文摘The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.
基金supported by National Natural Science Foundation of China(No.20775070)Zhejiang Provincial Natural Science Foundation of China(No.Y407153)sponsored by Zhejiang Provincial Assay Foundation of China(No.2007F70017)
文摘A La^3+-Cu/Pt modified electrode was fabricated by electrodepositing process in CuS04 solution by adding a small amount of lanthium compound, and it was employed for direct current (DC) amperometric detection of spectinomycin by anion-exchange chromatography. Without derivatization, this method can simultaneously determine the main component and impurities in spectinomycin pharmaceutical raw material. Ease of preparation, being applied in DC detection mode and good catalytic stability confirmed the interests of this modified electrode as amperometric sensor for the determination of spectinomycin.
文摘Abstract: Choleragenoid was obtained in pure form by ultra-filteration and fractionation on cationexchange resin-phospho-cellulose column. The choleragenoid was highly pure as judged by the electrophoresis of isoelectric focusing,immunization and SDS-gel electrophoresis.The results of test are thesame as that of the standard choleragenoid.Keywoeds:choleragenoid; vibrio cholerae; purification;ion-exchange; chromatography
基金supported by the National Natural Science Foundation of China(22078281)。
文摘The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).
文摘In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.
文摘In this study, an optimized high performance liquid chromatography-fluorescence detector (HPLC-FL) method for the determination of benzo[a]pyrene in edible oil was established. HPLC was performed with Thermo Fisher Scientific C18 column (250 mm×4.6 mm, 5 μm) as the chromatographic column and acetonitrile and water as the mobile phase, and the excitation wavelength and emission wavelength of fluorescence detector were 286 and 430 nm, respectively. The response was high, and the linear range was 0.5-10.0 ng/ml. The lowest limit of detection was 0.11 ng/ml, and the average recovery was 92.5%. This method is suitable for quantitative analysis of benzo[a]pyrene content in edible oil.
文摘Cation-exchange high-performance liquid chromatography(CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It's versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique.
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金financed by the project supported by the National Natural Science Foundation of China(22078266,21908180,22178289,22278338)the Key Research and Development Program of Shaanxi(2020ZDLGY11-02,2021GY-136)the Special Fund for High-level Scholars of China(XJ21B10)。
文摘The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1066)National Natural Science Foundation of China(No.21306086)Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BK20151452)
文摘L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
基金Project(2006AA06Z122)supported by the National High-tech Research and Development of China
文摘The influence of gravity on the reaction engineering of tubular reactor is studied by analyzing the residence time distribution curves.The results show that upflow-feeding mode is more beneficial compared with downflow-feeding mode,since the flow pattern of the fluid in the reactor is closer to plug flow.The result of dynamic experiment conducted in ion-exchange of tungsten metallurgy is as good as that in reaction engineering of ion-exchange column.Whether downflow-feeding or upflow-feeding mode is adopted,breakthrough time decreases when solution concentration increases.Upflow-feeding mode has longer breakthrough time and greater improvement in adsorption capacity especially with high WO3 concentration in ion-exchange.
文摘Methods for determining nine low molecular weight organic acids in root exudates were developed by using reversed phase high performance liquid chromatography with UV (ultraviolet) detection at 214 nm. The mobile phase was 18 mmol L -1 kH 2PO 4 adjusted to pH 2.25 with phosphoric acid and the flow rate was 0.3 mL min -1 . The analytical column was a reversed phase silica based C 18 column (Shim pack CLC ODS). The root exudates were collected through submerging the whole root system into aerated deionized water for 2 hours. The filtered exudate solutions were concentrated to dryness by rotary evaporation at 40 °C, dissolved in 10 mL mobile phase. The chromatographic conditions of organic acid determination were analyzed. The results showed that there was a high selectivity and sensitivity in the organic acid determination by reversed phase high performance liquid chromatography. Coefficients of variation for organic acid determination were lower than 10% except lactic acid. The recoveries were consistently between 80.1% to 108.3%. Detection limits were approximately 0.05 to 4.5 mg L -1 for organic acids except succinic acid with the detection limit of 7.0 mg L -1 . Phosphorus deficiency may contribute to the release of organic acids in soybean root exudates especially malic, lactic and citric acids.
文摘The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein's due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.
基金the Natural Science Foundation of Jiangxi Province,China(No.20202BABL203004)the Opening Project of the State Key Laboratory of Nuclear Resources and Environment(East China University of Technology)(No.2022NRE23)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(No.PMND202101).
文摘The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation method was proposed,and a pulsed nuclide automated separation device was developed,alongside a new chromatographic column.The length of this chromatographic column was 10 m,with an internal warp of 3 mm and a packing size of 1 mm,while the total separation units of the column reached 12,250.The most favorable conditions for the separation of nuclides were then obtained through optimizing the separation conditions of the device:Sample pH in the column=2,sample injection flow rate=5.698 mL/min,chromatographic column heating temperature=60℃.Separation experiments were also carried out for uranium,europium,and sodium ions in mixed solutions;uranium and sodium ions in water samples from the Ganjiang River;and uranium,sodium,and magnesium ions from seawater samples.The separation factors between the different nuclei were then calculated based on the experimental data,and a formula for the separation level was derived.The experimental results showed that the separation factor in the mixed solution of uranium and europium(1:1)was 1.088,while achieving the initial separation of uranium and europium theoretically required a 47-stage separation.Considering the separation factor of 1.50for the uranium and sodium ions in water samples from the Ganjiang River,achieving the initial separation of uranium and sodium ions would have theoretically required at least a 21-stage separation.Furthermore,for the seawater sample separation experiments,the separation factor of uranium and sodium ions was 1.2885;therefore,more than 28 stages of sample separation would be required to achieve uranium extraction from seawater.The novel pulsed liquid chromatography method proposed in this study was innovative in terms of uranium separation and enrichment,while expanding the possibilities of extracting uranium from seawater through chromatography.