A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phas...A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.展开更多
文摘A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.