The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition pro...The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.展开更多
The complex of [Sm(p-MOBA)3phen]2 (p-MOBA, p-methoxybenzoate; phen,1 10-phenanthroline) was prepared and characterized by elemental analysis, IR, and UV spectroscopy. The thermal decomposition of the [Sm(p-MOBA)...The complex of [Sm(p-MOBA)3phen]2 (p-MOBA, p-methoxybenzoate; phen,1 10-phenanthroline) was prepared and characterized by elemental analysis, IR, and UV spectroscopy. The thermal decomposition of the [Sm(p-MOBA)sphen]2 complex and its kinetics were studied under a static air atmosphere by TG-DTG methods. The intermediate and residue for each decomposition stage were identified from the TG curve. The kinetic parameters and mecha- nisms of the first decomposition stage were obtained from the analysis of the TG-DTG curves by a new method of processing the data of thermal analysis kinetics. The lifetime equation at a mass loss of 10% was deduced as lnr= - 30.6795 + 21034.56/Tby isothermal thermogravimelric analysis.展开更多
The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its therm...The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.展开更多
A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, a...A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.展开更多
The thermal behavior of [Tb_2( m -MBA)_6(phen)_2](H_2O)_2( m -MBA=C_8H_7O_2, methoxybenzoate; phen=C_ 12 H_8N_2, 1,10-phenanthroline) in static air atmosphere was investigated by means of TG-DTG and DTA methods. The...The thermal behavior of [Tb_2( m -MBA)_6(phen)_2](H_2O)_2( m -MBA=C_8H_7O_2, methoxybenzoate; phen=C_ 12 H_8N_2, 1,10-phenanthroline) in static air atmosphere was investigated by means of TG-DTG and DTA methods. The thermal decomposition of the title compound takes place mainly in two steps. The intermediate and the residue for each decomposition were identified by the TG curve. By the kinetic method of processing thermal analysis data put forward by Malek et al ., it is defined that the kinetics model for the first-step thermal decomposition is SB( m,n ).展开更多
A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine, o-vanillin and 2-hydroxy-l-naphthaldehyde. Solid La(Ⅲ) complex of this ligand [LaL(NO3)](NO3)·2H2O was prepared and characterized by el...A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine, o-vanillin and 2-hydroxy-l-naphthaldehyde. Solid La(Ⅲ) complex of this ligand [LaL(NO3)](NO3)·2H2O was prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage were studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt=A·e-E/RT·(1-α)2. The kinetic parameters(E, A), activation entropy S≠ and activation free-energy G≠ were also gained.展开更多
The thermal decomposition reaction of the [Zn(NFA)_2(NO_3)_2]·2H_2O(NFA=C_ 16H_ 18FN_3O_3,norfloxacin) was studied in a static atmosphere using TG-DTG and DTA methods. The thermal decomposition processes of the...The thermal decomposition reaction of the [Zn(NFA)_2(NO_3)_2]·2H_2O(NFA=C_ 16H_ 18FN_3O_3,norfloxacin) was studied in a static atmosphere using TG-DTG and DTA methods. The thermal decomposition processes of the complex were determined and its kinetics was investigated. The kinetic parameters were obtained from analysis of the TG-DTG curves by differential and integral methods. The most pro- bable mechanism for the second stage was suggested by comparision of the kinetic parameters.展开更多
The title complexes [Dy(p-NBA)3Phen]2-3H2O(Ⅰ) and [Dy(m-NBA)3Phen]2·4H2O(Ⅱ) were synthesized, in the two molecular formulas of which NBA is nitrobenzoate and Phen is 1,10-phenanthroline. The characteriz...The title complexes [Dy(p-NBA)3Phen]2-3H2O(Ⅰ) and [Dy(m-NBA)3Phen]2·4H2O(Ⅱ) were synthesized, in the two molecular formulas of which NBA is nitrobenzoate and Phen is 1,10-phenanthroline. The characterizations of the complexes were carried out by means of elemental analysis, UV, IR, XRD and molar conductivity. The thermal decomposition of the two complexes were studied under the non-isothermal condition by DSC, TG-DTG and IR methods in detail. The kinetic parameters of the dehydration process were also obtained by the analysis of DSC curves of the two complexes with Popescu and Vyazovkin methods, respectively.展开更多
The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid...The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.展开更多
The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis...The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by the Kissinger method,the Ozawa method,the differential method and the integral method. The most probable mechanism functions for the thermal decomposition of the first stage,the second stage and the third stage were suggested by comparing the kinetic parameters. The entropy of activation (ΔS ≠),enthalpy of activation (ΔH ≠) and free energy of activation (ΔG ≠) at Tpdo are -66.74 J·mol -1 ·K -1 ,119.2 kJ·mol -1 and 152.44 kJ·mol -1 ,respectively.展开更多
A complex of N.N'-ethylencbis (saliylidenemininato) diaquochromium(III) chloride.[Cr (salen) (H2O)2] Cl was prepared. and its decomposition mechanism was studied by TG and DTA. The IR spectrum of the product of th...A complex of N.N'-ethylencbis (saliylidenemininato) diaquochromium(III) chloride.[Cr (salen) (H2O)2] Cl was prepared. and its decomposition mechanism was studied by TG and DTA. The IR spectrum of the product of thermal decomposition was examined at the first stage.Kinetic results were obtained from the analysis of TG-DTG curves with three different methods The most probable kinetic functions were suggested by comparison of kinetic parameters,展开更多
The thermal behavior and non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O (en=ethylenediamine) were studied with DSC and TG-DTG methods.The kinetic equation of the exothermal process is dα...The thermal behavior and non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O (en=ethylenediamine) were studied with DSC and TG-DTG methods.The kinetic equation of the exothermal process is dα/dt=(10^17.92/β)4α^3/4exp(-1.688×10^5/RT).The self-accelerating decomposition temperature and critical temperature of the thermal explosion are 163.3 and 174.8 ℃,respectively.The specific heat capacity of [Cu(en)2H2O](FOX-7)2·H2O was determined with a micro-DSC method,with a molar heat capacity of 661.6 J·mol^-1·K^-1 at 25 ℃.Adiabatic time-to-explosion was also estimated as 23.2 s.[Cu(en)2H2O](FOX-7)2·H2O is less sensitive.展开更多
A new unsymmetrical Schiff base zwitterion (Ⅲ) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-l-naphthaldehyde. Samarium(Ⅲ) complex of this ligand [SmL(NO3)]NO3·2H2O has been prepared and c...A new unsymmetrical Schiff base zwitterion (Ⅲ) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-l-naphthaldehyde. Samarium(Ⅲ) complex of this ligand [SmL(NO3)]NO3·2H2O has been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as dα/dt=3/2Ae^E/RT(1-α)^2/3[1-(1 -α)^1/3)]^-1. The kinetic parameters (E, A), activation entropy △S^x and activation free-energy △G^x were also gained.展开更多
The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patte...The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patterns. The thermal decomposition of the complex was studied under the non-isothermal condition by TG-DTG and IR techniques. The most probable mechanism function of the dehydration process was obtained from the analysis of DSC curves of the complex employing the double extrapolated method on the basis of integral isoconversional non-linear (NL-INT) and Tang-Wanjun integral equations. The integral function of the mechanism was [1 -- (1 -α/2]1/2 and the corresponding kinetic parameters (activation energy E and the pre-exponential factor A) were obtained.展开更多
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln =...This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.展开更多
[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diff...[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diffraction analysis. The title complex has been studied by means of TG-DTG and DSC under conditions of linear temperature increase. The thermal decomposition residues were examined by FT IR analysis. Thermal decomposition mechanism of the title complex was proposed. In the temperature range of 30-680 ℃, the thermal decomposition process was composed of four major stages. The first stage was an endothermic process with the loss of four coordination water molecules. Since the dehydration product was unstable, when it was heated, it would be decomposed much more easily. The second stage was composed of an acute endothermic process and a continued strong exothermic process and the main decomposed residues were CuCO3, Cu(NCO)2 and polymers during this stage. The third stage was a sharp exothermic process, which resulted from the decomposition of the polymer. After the forth stage, the final decomposed residues were certainly copper oxide. The Arrhenius parameters have been also studied on the dehydration process and the first-step exothermic decomposition of [Cu(TO)2(H2O)4](PA)2 using Kissinger's method and Ozawa-Doyle's method. The results using both methods were consistent with each other. The Arrhenius equation can be expressed as in k=24.0-179.8 × 10^3/RT for the dehydration process and in k= 16.7-206.0 × 10^3/RT for the first-step exothermic decomposition, on the basis of the average of Ea and In A through the two methods.展开更多
基金This project was financially supported by the Education Department of Hebei Province.]
文摘The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.
基金the Natural Science Foundation of Hebei Province (No. B2007000237)Hebei Education Department (No. 2004325)Hebei Normal University (No. L2006Z06, No. L2005Y12).
文摘The complex of [Sm(p-MOBA)3phen]2 (p-MOBA, p-methoxybenzoate; phen,1 10-phenanthroline) was prepared and characterized by elemental analysis, IR, and UV spectroscopy. The thermal decomposition of the [Sm(p-MOBA)sphen]2 complex and its kinetics were studied under a static air atmosphere by TG-DTG methods. The intermediate and residue for each decomposition stage were identified from the TG curve. The kinetic parameters and mecha- nisms of the first decomposition stage were obtained from the analysis of the TG-DTG curves by a new method of processing the data of thermal analysis kinetics. The lifetime equation at a mass loss of 10% was deduced as lnr= - 30.6795 + 21034.56/Tby isothermal thermogravimelric analysis.
文摘The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.
文摘A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.
基金Supported by the Natural Science Foundation of Hebei Province(No.2 0 2 140 ) and Hebei Education Departm ent(No.2 0 0 112 1)
文摘The thermal behavior of [Tb_2( m -MBA)_6(phen)_2](H_2O)_2( m -MBA=C_8H_7O_2, methoxybenzoate; phen=C_ 12 H_8N_2, 1,10-phenanthroline) in static air atmosphere was investigated by means of TG-DTG and DTA methods. The thermal decomposition of the title compound takes place mainly in two steps. The intermediate and the residue for each decomposition were identified by the TG curve. By the kinetic method of processing thermal analysis data put forward by Malek et al ., it is defined that the kinetics model for the first-step thermal decomposition is SB( m,n ).
文摘A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine, o-vanillin and 2-hydroxy-l-naphthaldehyde. Solid La(Ⅲ) complex of this ligand [LaL(NO3)](NO3)·2H2O was prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage were studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt=A·e-E/RT·(1-α)2. The kinetic parameters(E, A), activation entropy S≠ and activation free-energy G≠ were also gained.
文摘The thermal decomposition reaction of the [Zn(NFA)_2(NO_3)_2]·2H_2O(NFA=C_ 16H_ 18FN_3O_3,norfloxacin) was studied in a static atmosphere using TG-DTG and DTA methods. The thermal decomposition processes of the complex were determined and its kinetics was investigated. The kinetic parameters were obtained from analysis of the TG-DTG curves by differential and integral methods. The most pro- bable mechanism for the second stage was suggested by comparision of the kinetic parameters.
基金Supported by the National Natural Science Foundation of China(No.20773034)the Natural Science Foundation of Hebei Province,China(No.B2007000237)the Science Foundation of Hebei Normal University,China(No.L2006Z06)
文摘The title complexes [Dy(p-NBA)3Phen]2-3H2O(Ⅰ) and [Dy(m-NBA)3Phen]2·4H2O(Ⅱ) were synthesized, in the two molecular formulas of which NBA is nitrobenzoate and Phen is 1,10-phenanthroline. The characterizations of the complexes were carried out by means of elemental analysis, UV, IR, XRD and molar conductivity. The thermal decomposition of the two complexes were studied under the non-isothermal condition by DSC, TG-DTG and IR methods in detail. The kinetic parameters of the dehydration process were also obtained by the analysis of DSC curves of the two complexes with Popescu and Vyazovkin methods, respectively.
基金ProjectsupportedbytheNaturalScienceFoundationofShaanxiProvince (No .98H0 10 )andStateKeyLaboratoryofRareEarthMaterialsChemistryandApplication&PekingUniversity .
文摘The pyruvic acid salicylhydrazone and its new complex of Pr(III) were synthesized. The formulae C 10 H 10 N 2O 4 (mark as H 3L) and [Pr 2(L) 2(H 2O) 2]·3H 2O (L=the triad form of the pyruvic acid salicylhydrazone [C 10 H 7N 2O 4] 3- ) were determined by elemental and EDTA volumetric analysis. Molar conductance, IR, UV, X ray and 1H NMR were carried out for the characterizations of the complex and the ligand. The thermal decompositions of the ligand and the complex with the kinetic study were carried out by non isothermal thermogravimetry. The Kissinger's method and Ozawa's method are used to calculate the activation energy value of the main step decomposition. The stages of the decompositions were identified by TG DTG DSC curve. The non isothermal kinetic data were analyzed by means of integral and differential methods. The possible reaction mechanism and the kinetic equation were investigated by comparing the kinetic parameters.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 99710 2 5 )
文摘The thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex and its kinetics were studied under the non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by the Kissinger method,the Ozawa method,the differential method and the integral method. The most probable mechanism functions for the thermal decomposition of the first stage,the second stage and the third stage were suggested by comparing the kinetic parameters. The entropy of activation (ΔS ≠),enthalpy of activation (ΔH ≠) and free energy of activation (ΔG ≠) at Tpdo are -66.74 J·mol -1 ·K -1 ,119.2 kJ·mol -1 and 152.44 kJ·mol -1 ,respectively.
文摘A complex of N.N'-ethylencbis (saliylidenemininato) diaquochromium(III) chloride.[Cr (salen) (H2O)2] Cl was prepared. and its decomposition mechanism was studied by TG and DTA. The IR spectrum of the product of thermal decomposition was examined at the first stage.Kinetic results were obtained from the analysis of TG-DTG curves with three different methods The most probable kinetic functions were suggested by comparison of kinetic parameters,
基金Supported by the National Natural Science Foundation of China(Nos. 21241003, 20803058), the Science and Technology Research and Development Program of Shaanxi Province, China(No.2013K02-25) and the Education Committee Foundation of Shaanxi Province, China(No.2013JK0697).
文摘The thermal behavior and non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O (en=ethylenediamine) were studied with DSC and TG-DTG methods.The kinetic equation of the exothermal process is dα/dt=(10^17.92/β)4α^3/4exp(-1.688×10^5/RT).The self-accelerating decomposition temperature and critical temperature of the thermal explosion are 163.3 and 174.8 ℃,respectively.The specific heat capacity of [Cu(en)2H2O](FOX-7)2·H2O was determined with a micro-DSC method,with a molar heat capacity of 661.6 J·mol^-1·K^-1 at 25 ℃.Adiabatic time-to-explosion was also estimated as 23.2 s.[Cu(en)2H2O](FOX-7)2·H2O is less sensitive.
文摘A new unsymmetrical Schiff base zwitterion (Ⅲ) was synthesized using L-lysine, salicylaldehyde and 2-hydroxy-l-naphthaldehyde. Samarium(Ⅲ) complex of this ligand [SmL(NO3)]NO3·2H2O has been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as dα/dt=3/2Ae^E/RT(1-α)^2/3[1-(1 -α)^1/3)]^-1. The kinetic parameters (E, A), activation entropy △S^x and activation free-energy △G^x were also gained.
基金Project supported by the National Natural Science Foundation of China (Nos. 21073053, 21073052 and 20773034), the Natural Science Foundation of Hebei Province (Nos. B2007000237, E2009000307) and Education Department Scientic Research Fund from Hebei Province (No. 2008469).
文摘The new complex of [Sm(p-MOBA)3bath]2·4H2O (p-MOBA, p-methoxybenzoate; bath, 4,7-diphenyl-l,10- phenanthroline) was synthesized and characterized by elemental analysis, molar conductance, IR, UV and XRD patterns. The thermal decomposition of the complex was studied under the non-isothermal condition by TG-DTG and IR techniques. The most probable mechanism function of the dehydration process was obtained from the analysis of DSC curves of the complex employing the double extrapolated method on the basis of integral isoconversional non-linear (NL-INT) and Tang-Wanjun integral equations. The integral function of the mechanism was [1 -- (1 -α/2]1/2 and the corresponding kinetic parameters (activation energy E and the pre-exponential factor A) were obtained.
基金the National Natural Science Foundation of China (21073053,21073052 and 20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.
基金Project supported by the National Natural Science Foundation of China (No. 20471008) and the Foundation for basic research by Beijing institute of Technology (No. BIT-UBF-200302B01).
文摘[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diffraction analysis. The title complex has been studied by means of TG-DTG and DSC under conditions of linear temperature increase. The thermal decomposition residues were examined by FT IR analysis. Thermal decomposition mechanism of the title complex was proposed. In the temperature range of 30-680 ℃, the thermal decomposition process was composed of four major stages. The first stage was an endothermic process with the loss of four coordination water molecules. Since the dehydration product was unstable, when it was heated, it would be decomposed much more easily. The second stage was composed of an acute endothermic process and a continued strong exothermic process and the main decomposed residues were CuCO3, Cu(NCO)2 and polymers during this stage. The third stage was a sharp exothermic process, which resulted from the decomposition of the polymer. After the forth stage, the final decomposed residues were certainly copper oxide. The Arrhenius parameters have been also studied on the dehydration process and the first-step exothermic decomposition of [Cu(TO)2(H2O)4](PA)2 using Kissinger's method and Ozawa-Doyle's method. The results using both methods were consistent with each other. The Arrhenius equation can be expressed as in k=24.0-179.8 × 10^3/RT for the dehydration process and in k= 16.7-206.0 × 10^3/RT for the first-step exothermic decomposition, on the basis of the average of Ea and In A through the two methods.