EST-PCR based molecular markers specific for alien chromosomes are not only useful for the detection of the introgressed alien chromatin in the wheat background, but also provide evidence of the syntenic relationship ...EST-PCR based molecular markers specific for alien chromosomes are not only useful for the detection of the introgressed alien chromatin in the wheat background, but also provide evidence of the syntenic relationship between homoeologous chromosomes. In the present study, in order to develop high density and evenly distributed molecular markers on chromosome 4V of Haynaldia villosa, a total of 607 primer pairs were designed according to the EST sequences, which were previously located in 23 different bins of wheat chromosomes 4A, 4B and 4D. By using the Triticum durum-H, villosa amphiploid and T. aestivum-H, villosa alien chromosome lines involving chromosome 4V, it was found that 9.23% of the tested primers could amplify specific bands for chromosome 4V. Thirty and twenty-six specific markers could be assigned to chromosome arms 4VS and 4VL, respectively. These 4V specific markers provided efficient tools for the characterization of structural variation involving the chromosome 4V as well as for the selection of useful genes located on chromosome 4V in breeding programs.展开更多
Haynaldia villosa (2n=2X= 14, VV), a relative of wheat, plays important roles in wheat improvement mainly owing to its disease resistance. Powdery mildew resistance gene Pm21 has been successfully transferred into w...Haynaldia villosa (2n=2X= 14, VV), a relative of wheat, plays important roles in wheat improvement mainly owing to its disease resistance. Powdery mildew resistance gene Pm21 has been successfully transferred into wheat by Cytogenetic Institute, Nanjing Agricultural University, China, and is widely used in the current wheat breeding programs. In this research, our objective is to further transfer and utilize the beneficial genes such as eye-spot resistance, yellow rust resistance, and gene of the tufted bristles on the glume ridge (a remarkable morphology) mapped on 2V of Haynaldia villosa. A disomic addition line with gametocidal chromosome 3C ofAegilops triuncialis added in Norin-26 was crossed to the wheat-H, villosa disomic substitution 2V(2D) and the hybrid F1 was then self-crossed. Chromosome C-banding, genomic in situ hybridization (GISH), and meiotic analysis in combination with molecular markers were applied to detect the chromosome variations derived from hybrids Fz and F3. To date, four translocations including one small segmental translocation T6BS·6BL-2VS, two whole arm translocations (preliminarily designed as T3DS·2VL and T2VS.7DL) and one intercalary translocation T2VS·2VL-W-2VL, one deletion Del. 2VS·2VL-, one monotelosomic Mt2VS, and one isochromosome 2VS·2VS line have been developed and characterized. One wheat SSR marker Xwmc25.120 tagging 2VS and one wheat STS marker NAU/STSBCD135-1 (2BL) tagging 2VL were successfully used to confirm the alien chromosome segments involved in the seven lines. The tufted bristles on the glume ridge appeared in lines T2VS-7DL, Mt2VS, 2VS-2VS as well as the parent DS2V(2D), whereas in T3DS·2VL, this trait did not appear. The gene controlling the tufted bristles was located on 2VS. Gametocidal chromosome 3C ofAegilops triuncialis could successfully induce chromosome 2V structural changes.展开更多
The material T240_6 derived from SC 2 young embryo of the combination CA9211/RW15 (6D/6V alien substitution) was telosomic substitution line of 6VS identified by GISH (genomic in situ hybridization) analysis. The 6V...The material T240_6 derived from SC 2 young embryo of the combination CA9211/RW15 (6D/6V alien substitution) was telosomic substitution line of 6VS identified by GISH (genomic in situ hybridization) analysis. The 6VS was microdissected with a needle and transferred into a 0.5 mL Ep tube. In the 'single tube', all the subsequence steps were conducted. After two round of LA (Linker adaptor)_PCR amplification, the size of PCR bands ranged from 100 to 3 000 bp, with predominate bands 600-1 500 bp. The products were confirmed by Southern blotting analysis using Haynaldia villosa (L.) Schur. genomic DNA labeled with 32 P as probe. The PCR products were purified and ligated into clone vector-pGEM_T easy vector. Then, the plasmids were transformed into competence E. coli JM109 with cool CaCl 2. It was estimated that there were more than 17 000 white clones in the library. The size of insert fragments distributed from 100-1 500 bp, with average of 600 bp. Using H. villosa genomic DNA as probe, dot blotting results showed that 37% clones displayed strong and medium positive signals, and 63% clones had faint or no signals. It is demonstrated that there were about 37% repeat sequence clones and 67% single/unique sequence clones in the library. Eight H. villosa_specific clones were screened from the library, and two clones pHVMK22 and pHVMK134 were used for RFLP analysis and sequencing. Both of them were H. villosa specific clones. The pHVMK22 was a unique sequence clone, and the pHVMK134 was a repeat sequence clone. When the pHVMK22 was used as a probe for Southern hybridization, all the powdery mildew resistance materials showed a special band of 2 kb, while all the susceptible ones not. The pHVMK22 may be applied to detect the existence of Pm21.展开更多
The line of T240-6 was selected from 32 SC 2 lines of immature embryo culture of T240 (common wheat (Triticum aestivum L.)× Wheat-Haynaldia villosa (L.) Schur. 6D/6V substitution line) through powdery mildew ch...The line of T240-6 was selected from 32 SC 2 lines of immature embryo culture of T240 (common wheat (Triticum aestivum L.)× Wheat-Haynaldia villosa (L.) Schur. 6D/6V substitution line) through powdery mildew characterization, glutamate oxaloacetate transaminase (GOT) enzyme and gliadin (Gli) analyses and in situ hybridization. All of the individual plants resistant to powdery mildew lacked the locus of GOT at 6VL arm (GOT-V 2) and had gliadin locus at 6VS arm (Gli-V 2) of Haynaldia villosa. All the plants resistant to powdery mildew had one or two telocentric chromosomes that did not pair with wheat chromosomes but paired between themselves. T240-6 was identified as a telocentric line through in situ hybridization.展开更多
Haynaldia villosa is a wild relative of wheat and a valuable gene resource for wheat improvement.Owing to the limited number of probes available for fluorescence in situ hybridization(FISH),the resolution at which the...Haynaldia villosa is a wild relative of wheat and a valuable gene resource for wheat improvement.Owing to the limited number of probes available for fluorescence in situ hybridization(FISH),the resolution at which the karyotype of H.villosa can be characterized is poor,hampering accurate characterization of small segmental alien introgressions.We designed ten oligonucleotide probes using tandem repeats in DNA sequences derived from the short arm of H.villosa chromosome 6 V(6 VS).FISH with seven of them resulted in clear signals on H.villosa chromosomes.Using these,we constructed FISH karyotypes for H.villosa using oligo-6 VS-1 and oligo-6 VS-35 oligonucleotides and characterized the distribution of the two probes in five different H.villosa accessions.The new FISH probes can efficiently characterize H.villosa introgressions into wheat.展开更多
[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum a...[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum aestivum)-Haynaldia villosa disomic substitution line and common wheat Nonglin26-3C chromosome of Aegilops triuncialis disomic addition line,the analysis methods such as chromosome C-banding,genomic in situ hybridization and molecular marker technique were comprehensively applied and combined characters investigation.[Result] The wheat-Haynaldia villosa translocation line(T6BS·6BL-2VS)was selected from hybrid progenies to conduct characters investigation,which found some bristles on glume ridge of T6BS·6BL-2VS.[Conclusion] The translocation line induced by gametocidal chromosome was a small segment translocation line and the gene of bristle on glume ridge of Haynaldia villosa was located between the middle and the terminal of 2VS.展开更多
Bacterial artificial chromosomes(BACs)or yeast artificial chromosomes(YACs)containing large inserts as probes for fluorescence in situ hybridization(FISH)have been used in the physical mapping of specific DNA sequence...Bacterial artificial chromosomes(BACs)or yeast artificial chromosomes(YACs)containing large inserts as probes for fluorescence in situ hybridization(FISH)have been used in the physical mapping of specific DNA sequences,especially for single-or low-copy sequences.Our earlier study identified Stpk-V,a powdery mildew resistance-related gene located on the 6VS chromosome arm of the wild grass Haynaldia villosa(tribe Triticeae),and obtained several Triticum aestivum–H.villosa alien chromosome lines carrying the Stpk-V gene.However,the precise physical location of the Stpk-V gene on chromosome 6VS is not known.In this study,we used TAC-FISH with TAC15 as the probe coupled with sequential genomic in situ hybridization(GISH)to determine the physical location of the Stpk-V gene in different T.aestivum–H.villosa 6V alien chromosome lines,including addition,substitution and translocation lines.The result indicated that the fraction length of the Stpk-V locus is 0.575±0.035 on the 6V chromosome short arm and this was confirmed by FISH using TAC15 as the probe for tracing the Stpk-V gene in other genetic stocks.The cytological mapping strategies used in this study will be of benefit for tracing the alien gene location in the course of introducing desirable traits from wild species.展开更多
Haynaldia villosa possesses a lot of important agronomic traits and has been a powerful gene resource for wheat improvement. However, only several wheat-H, villosa translocation lines have been reported so far. In thi...Haynaldia villosa possesses a lot of important agronomic traits and has been a powerful gene resource for wheat improvement. However, only several wheat-H, villosa translocation lines have been reported so far. In this study, we attempted to develop an efficient method for inducing wheat-H, villosa chromosomal translocations. Triticum durum- Haynaldia villosa amphiploid pollen treated with 1 200 rad ^60Co-y-rays was pollinated to Triticum aestivum cv. 'Chinese Spring'. Ninety-eight intergeneric translocated chromosomes between T. durum and H. villosa were detected by genomic in situ hybridization in 44 of 61 M1 plants, indicating a translocation occurrence frequency of 72.1%; much higher than ever reported. There were 26, 62 and 10 translocated chromosomes involving whole arm translocations, terminal translocations, and intercarlary translocations, respectively. Of the total 108 breakage-fusion events, 79 involved interstitial regions and 29 involved centric regions. The ratio of small segment terminal translocations (W.W-V) was much higher than that of large segment terminal translocations (W-V.V). All of the M1 plants were self-sterile, and their backcross progeny was all obtained with 'Chinese Spring' as pollen donors. Transmission analysis showed that most of the translocations were transmittable. This study provides a new strategy for rapid mass production of wheat-alien chromosomal translocations, especially terminal translocations that will be more significant for wheat improvement.展开更多
In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, ...In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, 1,200, and 1,600 rad. Pollen collected from the spikes 1, 2, and 3 days after irradiation were transferred to emasculated spikes of the common wheat cv. ‘Chinese Spring'. Genomic in situ hybridization was used to identify wheat-H, villosa chromosome translocations in the M1 generation. Transmission of the identified translocation chromosomes was analyzed in the BC1, BC2, and BC3 generations. The results indicated that all three irradiation doses were highly efficient for inducing wheat-alien translocations without affecting the viability of the M1 seeds. Within the range of 800-1,600 rad, both the efficiency of translocation induction and the frequency of interstitial chromosome breakage-fusion increased as the irradiation dosage increased. A higher translocation induction frequency was observed using pollen collected from the spikes 1 day after irradiation over that of 2 or 3 days after irradiation. More than 70% of the translocations detected in the M1 generation were transmitted to the BC1 through the female gametes. All translocations recovered in the BC1 generation were recovered in the following BC2, and BC3 generations. The transmission ability of different translocation types in different genetic backgrounds showed an order of ‘whole-arm translocation 〉 small alien segment translocation 〉 large alien segment translocation', through either male or female gametes, In general, the transmission ability through the female gametes was higher than that through the male gametes. By this approach, 14 translocation lines that involved different H. villosa chromosomes have been identified in the BC3 using EST-STS markers, and eight of them were homozygous.展开更多
基金supported by the National High-Tech R & D Program of China(2011AA10010103,2011AA10010201)the National Natural Science Foundation of China (31201204)+1 种基金the Natural Science Foundation of Jiangsu Province,China (BK2010448)the Technology Support Program of Jiangsu Province,Chian (BE2012306)
文摘EST-PCR based molecular markers specific for alien chromosomes are not only useful for the detection of the introgressed alien chromatin in the wheat background, but also provide evidence of the syntenic relationship between homoeologous chromosomes. In the present study, in order to develop high density and evenly distributed molecular markers on chromosome 4V of Haynaldia villosa, a total of 607 primer pairs were designed according to the EST sequences, which were previously located in 23 different bins of wheat chromosomes 4A, 4B and 4D. By using the Triticum durum-H, villosa amphiploid and T. aestivum-H, villosa alien chromosome lines involving chromosome 4V, it was found that 9.23% of the tested primers could amplify specific bands for chromosome 4V. Thirty and twenty-six specific markers could be assigned to chromosome arms 4VS and 4VL, respectively. These 4V specific markers provided efficient tools for the characterization of structural variation involving the chromosome 4V as well as for the selection of useful genes located on chromosome 4V in breeding programs.
基金the National Natural Science Foundation of China (30270827).
文摘Haynaldia villosa (2n=2X= 14, VV), a relative of wheat, plays important roles in wheat improvement mainly owing to its disease resistance. Powdery mildew resistance gene Pm21 has been successfully transferred into wheat by Cytogenetic Institute, Nanjing Agricultural University, China, and is widely used in the current wheat breeding programs. In this research, our objective is to further transfer and utilize the beneficial genes such as eye-spot resistance, yellow rust resistance, and gene of the tufted bristles on the glume ridge (a remarkable morphology) mapped on 2V of Haynaldia villosa. A disomic addition line with gametocidal chromosome 3C ofAegilops triuncialis added in Norin-26 was crossed to the wheat-H, villosa disomic substitution 2V(2D) and the hybrid F1 was then self-crossed. Chromosome C-banding, genomic in situ hybridization (GISH), and meiotic analysis in combination with molecular markers were applied to detect the chromosome variations derived from hybrids Fz and F3. To date, four translocations including one small segmental translocation T6BS·6BL-2VS, two whole arm translocations (preliminarily designed as T3DS·2VL and T2VS.7DL) and one intercalary translocation T2VS·2VL-W-2VL, one deletion Del. 2VS·2VL-, one monotelosomic Mt2VS, and one isochromosome 2VS·2VS line have been developed and characterized. One wheat SSR marker Xwmc25.120 tagging 2VS and one wheat STS marker NAU/STSBCD135-1 (2BL) tagging 2VL were successfully used to confirm the alien chromosome segments involved in the seven lines. The tufted bristles on the glume ridge appeared in lines T2VS-7DL, Mt2VS, 2VS-2VS as well as the parent DS2V(2D), whereas in T3DS·2VL, this trait did not appear. The gene controlling the tufted bristles was located on 2VS. Gametocidal chromosome 3C ofAegilops triuncialis could successfully induce chromosome 2V structural changes.
基金国家"8 6 3"计划资助项目 (Z 17 0 4 0 1) 国家转基因植物研究与产业化资助项目 (J0 0 A 0 0 2 )~~
文摘The material T240_6 derived from SC 2 young embryo of the combination CA9211/RW15 (6D/6V alien substitution) was telosomic substitution line of 6VS identified by GISH (genomic in situ hybridization) analysis. The 6VS was microdissected with a needle and transferred into a 0.5 mL Ep tube. In the 'single tube', all the subsequence steps were conducted. After two round of LA (Linker adaptor)_PCR amplification, the size of PCR bands ranged from 100 to 3 000 bp, with predominate bands 600-1 500 bp. The products were confirmed by Southern blotting analysis using Haynaldia villosa (L.) Schur. genomic DNA labeled with 32 P as probe. The PCR products were purified and ligated into clone vector-pGEM_T easy vector. Then, the plasmids were transformed into competence E. coli JM109 with cool CaCl 2. It was estimated that there were more than 17 000 white clones in the library. The size of insert fragments distributed from 100-1 500 bp, with average of 600 bp. Using H. villosa genomic DNA as probe, dot blotting results showed that 37% clones displayed strong and medium positive signals, and 63% clones had faint or no signals. It is demonstrated that there were about 37% repeat sequence clones and 67% single/unique sequence clones in the library. Eight H. villosa_specific clones were screened from the library, and two clones pHVMK22 and pHVMK134 were used for RFLP analysis and sequencing. Both of them were H. villosa specific clones. The pHVMK22 was a unique sequence clone, and the pHVMK134 was a repeat sequence clone. When the pHVMK22 was used as a probe for Southern hybridization, all the powdery mildew resistance materials showed a special band of 2 kb, while all the susceptible ones not. The pHVMK22 may be applied to detect the existence of Pm21.
文摘The line of T240-6 was selected from 32 SC 2 lines of immature embryo culture of T240 (common wheat (Triticum aestivum L.)× Wheat-Haynaldia villosa (L.) Schur. 6D/6V substitution line) through powdery mildew characterization, glutamate oxaloacetate transaminase (GOT) enzyme and gliadin (Gli) analyses and in situ hybridization. All of the individual plants resistant to powdery mildew lacked the locus of GOT at 6VL arm (GOT-V 2) and had gliadin locus at 6VS arm (Gli-V 2) of Haynaldia villosa. All the plants resistant to powdery mildew had one or two telocentric chromosomes that did not pair with wheat chromosomes but paired between themselves. T240-6 was identified as a telocentric line through in situ hybridization.
基金supported by the National Key Research and Development Program of China(2016YFD0102001)the National Natural Science Foundation of China(31571653,31771782,31201204,31501305)+3 种基金International Cooperation and Exchange Programme of the National Natural Science Foundation of China(31661143005)Introducing the Technique to Exploring the Genetic Germplasm Based on the Chromosome Sorting and Sequencing(2015-Z41)the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements(BA2017138)supported by European Regional Development Fund Project“Plants as a Tool for Sustainable Global Development”(CZ.02.1.01/0.0/0.0/16_019/0000827)。
文摘Haynaldia villosa is a wild relative of wheat and a valuable gene resource for wheat improvement.Owing to the limited number of probes available for fluorescence in situ hybridization(FISH),the resolution at which the karyotype of H.villosa can be characterized is poor,hampering accurate characterization of small segmental alien introgressions.We designed ten oligonucleotide probes using tandem repeats in DNA sequences derived from the short arm of H.villosa chromosome 6 V(6 VS).FISH with seven of them resulted in clear signals on H.villosa chromosomes.Using these,we constructed FISH karyotypes for H.villosa using oligo-6 VS-1 and oligo-6 VS-35 oligonucleotides and characterized the distribution of the two probes in five different H.villosa accessions.The new FISH probes can efficiently characterize H.villosa introgressions into wheat.
基金Supported by the National Natural Science Foundation of China(10475041)the Foundation of Nanjing Xiaozhuang University for the Key Discipline Construction(2005NXY01)the Scientific Research Founda-tion for Talents of Nanjing Xiaozhuang University(2008NXY04)~~
文摘[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum aestivum)-Haynaldia villosa disomic substitution line and common wheat Nonglin26-3C chromosome of Aegilops triuncialis disomic addition line,the analysis methods such as chromosome C-banding,genomic in situ hybridization and molecular marker technique were comprehensively applied and combined characters investigation.[Result] The wheat-Haynaldia villosa translocation line(T6BS·6BL-2VS)was selected from hybrid progenies to conduct characters investigation,which found some bristles on glume ridge of T6BS·6BL-2VS.[Conclusion] The translocation line induced by gametocidal chromosome was a small segment translocation line and the gene of bristle on glume ridge of Haynaldia villosa was located between the middle and the terminal of 2VS.
基金supported by the National Basic Research Program of China(2009CB118304)the National Natural Science Foundation of China(31171540,30871519)+2 种基金the Program for New Century Excellent Talents in University(NCET-10-0496)the Independent Innovation of Agricultural Sciences(CX(11)1025)the Sci&Tech Project in Jiangsu Province(BE2011306)
文摘Bacterial artificial chromosomes(BACs)or yeast artificial chromosomes(YACs)containing large inserts as probes for fluorescence in situ hybridization(FISH)have been used in the physical mapping of specific DNA sequences,especially for single-or low-copy sequences.Our earlier study identified Stpk-V,a powdery mildew resistance-related gene located on the 6VS chromosome arm of the wild grass Haynaldia villosa(tribe Triticeae),and obtained several Triticum aestivum–H.villosa alien chromosome lines carrying the Stpk-V gene.However,the precise physical location of the Stpk-V gene on chromosome 6VS is not known.In this study,we used TAC-FISH with TAC15 as the probe coupled with sequential genomic in situ hybridization(GISH)to determine the physical location of the Stpk-V gene in different T.aestivum–H.villosa 6V alien chromosome lines,including addition,substitution and translocation lines.The result indicated that the fraction length of the Stpk-V locus is 0.575±0.035 on the 6V chromosome short arm and this was confirmed by FISH using TAC15 as the probe for tracing the Stpk-V gene in other genetic stocks.The cytological mapping strategies used in this study will be of benefit for tracing the alien gene location in the course of introducing desirable traits from wild species.
基金Supported by the National Natural Science Foundation of China(30270827)the Program for Changjiang Scholars and Innovative Research in Universities(10418).
文摘Haynaldia villosa possesses a lot of important agronomic traits and has been a powerful gene resource for wheat improvement. However, only several wheat-H, villosa translocation lines have been reported so far. In this study, we attempted to develop an efficient method for inducing wheat-H, villosa chromosomal translocations. Triticum durum- Haynaldia villosa amphiploid pollen treated with 1 200 rad ^60Co-y-rays was pollinated to Triticum aestivum cv. 'Chinese Spring'. Ninety-eight intergeneric translocated chromosomes between T. durum and H. villosa were detected by genomic in situ hybridization in 44 of 61 M1 plants, indicating a translocation occurrence frequency of 72.1%; much higher than ever reported. There were 26, 62 and 10 translocated chromosomes involving whole arm translocations, terminal translocations, and intercarlary translocations, respectively. Of the total 108 breakage-fusion events, 79 involved interstitial regions and 29 involved centric regions. The ratio of small segment terminal translocations (W.W-V) was much higher than that of large segment terminal translocations (W-V.V). All of the M1 plants were self-sterile, and their backcross progeny was all obtained with 'Chinese Spring' as pollen donors. Transmission analysis showed that most of the translocations were transmittable. This study provides a new strategy for rapid mass production of wheat-alien chromosomal translocations, especially terminal translocations that will be more significant for wheat improvement.
基金supported by the National Natural Science Foundation of China (No.30270827 and 30871519)the High Tech Program of China (No.2006AA100101,2006AA10Z1F6)the Ministry of Educate 111 Project (B08025)
文摘In order to develop more wheat-Haynaldia villosa translocations involving different chromosomes and chromosome segments of H. villosa, T. durum-H, villosa amphiploid was irradiated with ^60Co γ-rays at doses of 800, 1,200, and 1,600 rad. Pollen collected from the spikes 1, 2, and 3 days after irradiation were transferred to emasculated spikes of the common wheat cv. ‘Chinese Spring'. Genomic in situ hybridization was used to identify wheat-H, villosa chromosome translocations in the M1 generation. Transmission of the identified translocation chromosomes was analyzed in the BC1, BC2, and BC3 generations. The results indicated that all three irradiation doses were highly efficient for inducing wheat-alien translocations without affecting the viability of the M1 seeds. Within the range of 800-1,600 rad, both the efficiency of translocation induction and the frequency of interstitial chromosome breakage-fusion increased as the irradiation dosage increased. A higher translocation induction frequency was observed using pollen collected from the spikes 1 day after irradiation over that of 2 or 3 days after irradiation. More than 70% of the translocations detected in the M1 generation were transmitted to the BC1 through the female gametes. All translocations recovered in the BC1 generation were recovered in the following BC2, and BC3 generations. The transmission ability of different translocation types in different genetic backgrounds showed an order of ‘whole-arm translocation 〉 small alien segment translocation 〉 large alien segment translocation', through either male or female gametes, In general, the transmission ability through the female gametes was higher than that through the male gametes. By this approach, 14 translocation lines that involved different H. villosa chromosomes have been identified in the BC3 using EST-STS markers, and eight of them were homozygous.