To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-far...To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.展开更多
The farming-pastoral zone of northern China plays a dual role in ecological conditions and production and occupies an important position in the national economy. In this paper, the methodology of system engineering is...The farming-pastoral zone of northern China plays a dual role in ecological conditions and production and occupies an important position in the national economy. In this paper, the methodology of system engineering is introduced to construct and optimize an eco-productive paradigm system for the typical areas of the farming-pastoral zone. The system was constructed in the following steps: (1) design the framework of the paradigm system based on the data of physical site characteristics, biocommunities, production and economy, social culture and historical changes; (2) analyze the vegetation patterns, the interactions between vegetation and environmental factors (natural, social, economic, etc.) and the contributions of vegetation to the area, including the synthesis of the existing researches; and (3) provide the spatial arrangements of ecosystems and planning of each area, raise a comprehensive indicators of evaluation, evaluate the feasibility and soundness, and determine the optimum eco-productive paradigms for policy-makers which were land-use patterns within the threshold of ecological conservation. Three primitive paradigms of Maowusu (Mu Us) Ssandy Land, Loess Plateau and Huailai Basin in the farming-pastoral zone of northern China were proposed according to this paradigm system.展开更多
In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a ...In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.展开更多
In this article, the distribution of cultivated land, the changes ofcultivated land productivity, and regional differentiation of the Change forpresent productivity in the Farming-Pastoral Zone, Inner Mongolia aredis...In this article, the distribution of cultivated land, the changes ofcultivated land productivity, and regional differentiation of the Change forpresent productivity in the Farming-Pastoral Zone, Inner Mongolia arediscussed. Then, the close relationship between dynamic characterlsticsdivision and atmospheric circulation systems is revealed. Finally, based ondynamic characteristics, four regions are divided, including thenortheastem area, the eastern area, the western area, and the middle area.展开更多
Using information about the land cover of the Farming-Pastoral Zone of Northern China retrieved from multi-temporal NOAA/AVHRR and SPOT VEGETAN images obtained in 1989, 1994 and 1999, the authors analyzed land-use pat...Using information about the land cover of the Farming-Pastoral Zone of Northern China retrieved from multi-temporal NOAA/AVHRR and SPOT VEGETAN images obtained in 1989, 1994 and 1999, the authors analyzed land-use pattern evolution over this 10-year period and built a land-use pattern simulation model, based on which land-use pattern evolution and optimization modeling in this region were studied. Results showed that the proposed model can effectively simulate regional land-use patterns and help improve regional ecological environments.展开更多
文摘To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail.
文摘The farming-pastoral zone of northern China plays a dual role in ecological conditions and production and occupies an important position in the national economy. In this paper, the methodology of system engineering is introduced to construct and optimize an eco-productive paradigm system for the typical areas of the farming-pastoral zone. The system was constructed in the following steps: (1) design the framework of the paradigm system based on the data of physical site characteristics, biocommunities, production and economy, social culture and historical changes; (2) analyze the vegetation patterns, the interactions between vegetation and environmental factors (natural, social, economic, etc.) and the contributions of vegetation to the area, including the synthesis of the existing researches; and (3) provide the spatial arrangements of ecosystems and planning of each area, raise a comprehensive indicators of evaluation, evaluate the feasibility and soundness, and determine the optimum eco-productive paradigms for policy-makers which were land-use patterns within the threshold of ecological conservation. Three primitive paradigms of Maowusu (Mu Us) Ssandy Land, Loess Plateau and Huailai Basin in the farming-pastoral zone of northern China were proposed according to this paradigm system.
基金supported by the National Natural Science Foundation of China (40771019)
文摘In order to understand land use/land cover changes (LUCC) and the eco-environment response to LUCC in farming- pastoral zone of the northern China during the recent twenty years, Baotou prefecture was selected as a case study area for investigation and quantitative evaluation. Technologies of remote sensing (RS), global positioning system (GPS), geographic information system (GIS), and other statistical methods were employed to implement. Results showed that: (1) During the recent twenty years, the areas of forest lands, grasslands and water were reduced, whereas the areas of other types were enlarged. Parts of forest lands, grasslands, and waters had become farmlands, and about 31.5% of the changed grasslands transferred into unused lands. The newly increased farmlands mainly came from grasslands and unused lands. And the newly increased construction lands mainly came from grasslands and farmlands. (2) Regional eco- environmental quality decreased by 12.6%, for which the land degradation (especially the meadow degeneration) and the developing of the cultivated land were mainly responsible, and their contributions to the regional eco-environment changes were 51.84 and 23.63% respectively. (3) The tendency of LUCC and the eco-environment response to LUCC displayed spatial heterogeneity. It can be concluded that the present agricultural production mode was not sustainable in farming-pastoral zone of northern China. Land degradation, especially meadow degradation induced by over-trampling and overgrazing, and developing of cultivated land were mainly responsible for regional eco-environment deterioration. Changing the cultivated land to forest or grass, however, can relieve deterioration of local eco-environment to some extents. And in the farming-pastoral zone in the northern China, evaluating regional eco-environment responses to LUCC was very necessary due to its fragile eco-environments.
文摘In this article, the distribution of cultivated land, the changes ofcultivated land productivity, and regional differentiation of the Change forpresent productivity in the Farming-Pastoral Zone, Inner Mongolia arediscussed. Then, the close relationship between dynamic characterlsticsdivision and atmospheric circulation systems is revealed. Finally, based ondynamic characteristics, four regions are divided, including thenortheastem area, the eastern area, the western area, and the middle area.
文摘Using information about the land cover of the Farming-Pastoral Zone of Northern China retrieved from multi-temporal NOAA/AVHRR and SPOT VEGETAN images obtained in 1989, 1994 and 1999, the authors analyzed land-use pattern evolution over this 10-year period and built a land-use pattern simulation model, based on which land-use pattern evolution and optimization modeling in this region were studied. Results showed that the proposed model can effectively simulate regional land-use patterns and help improve regional ecological environments.