期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
IMPLICIT DEGREES AND CHVATAL'S CONDITION FOR HAMILTONICITY
1
作者 朱永津 高敬振 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1989年第4期353-363,共11页
Based on the ideas in[9],an integer d<sup>0</sup>(v),called the implicit degree of v whichsatisfies d<sup>0</sup>(v)≥d(v),is associated with each vertex v of a graph G.It is proved that ... Based on the ideas in[9],an integer d<sup>0</sup>(v),called the implicit degree of v whichsatisfies d<sup>0</sup>(v)≥d(v),is associated with each vertex v of a graph G.It is proved that if theimplicit degree sequence d<sub>1</sub><sup>0</sup>,d<sub>2</sub><sup>0</sup>,…,d<sub>n</sub><sup>0</sup>(where d<sub>1</sub><sup>0</sup>≤d<sub>2</sub><sup>0</sup>≤…≤d<sub>n</sub><sup>0</sup>)of a simple graph G on n≥3vertices satisfiesd<sub>i</sub><sup>0</sup>≤i【n/2(?)d<sub>n-i</sub><sup>0</sup>≥n-i,then G is hamiltonian.This is an improvement of the well-known theorem of Chvatal([4]). 展开更多
关键词 HAMILTONIAN graph IMPLICIT degree chvatal’s CONDITION HAMILTONICITY PREsERVING supergraph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部