To understand structural changes and forecast error,a case study of binary typhoons in the western North Pacific(WNP)of 2018 was investigated using best track and reanalysis data.Soulik was generated on August 16 and ...To understand structural changes and forecast error,a case study of binary typhoons in the western North Pacific(WNP)of 2018 was investigated using best track and reanalysis data.Soulik was generated on August 16 and Cimaron was generated on August 18,respectively.The 19 th typhoon Soulik and 20 th typhoon Cimaron co-existed from August 18 to 24 and approached each other.Soulik was located on the western side and Cimaron was located on the eastern side of the WNP.They were located approximately 1300 km from each other at 00 UTC August 22.The Soulik structure began changing around August 22 and became weak and slow,while Cimaron maintained its intensity,size,and moving speed.This observational evidence is likely caused by the binary interaction between two typhoons within a certain distance and environmental steering flow,such as the location of the North Pacific high and strong jet stream of the northern flank of the North Pacific high.Soulik was initially forecasted to make landfall and reach Seoul;however,its track changed from northward to northeastward from August 21 to 23 according to both official guidance and unified model(UM).Four global numerical weather prediction models forecasted different tracks of Soulik.UM and JGSM forecasted a northward track whereas ECMWF and GFS showed a northeastward track for 12 UTC August 21 through 12 UTC August 24.The latter models were similar to the best track.The track forecast error and spread of Soulik were larger than those of Cimaron.The mean absolute error of the maximum wind speed of Soulik was similar to the average of total typhoons in 2018.展开更多
利用常规气象观测资料、NCEP再分析资料、卫星云图和雷达回波等资料,采用多种物理量诊断分析方法,对路径相似、在闽南地区产生特大暴雨的1308号台风"西马仑"和1407号台风"海贝思"的环流形势特征、云系结构特征及水...利用常规气象观测资料、NCEP再分析资料、卫星云图和雷达回波等资料,采用多种物理量诊断分析方法,对路径相似、在闽南地区产生特大暴雨的1308号台风"西马仑"和1407号台风"海贝思"的环流形势特征、云系结构特征及水汽、动力、热力条件进行了对比分析。结果表明:"西马仑"的过程特点是雨强大、降水时间集中,而"海贝思"的特点则是雨强小、降水时间长;"西马仑"云系结构紧密,属中尺度对流云团降水,而"海贝思"云系结构松散,其外围的螺旋云带产生的列车效应是产生特大暴雨的重要原因;两个台风都具有低空急流、风速辐合、低层辐合高层辐散流场等有利于产生特大暴雨的环流形势特征;两个台风都存在低空偏东风和偏南风急流,两支急流为暴雨区提供了充足的水汽条件,低空急流较强的时段与强降水时段相对应;台风中心附近强辐合辐散区的建立和维持是产生特大暴雨重要的动力条件,水汽辐合区的面积和强度与暴雨区范围和降水强度相吻合;垂直速度大值区的维持时间与强降水的维持时间相一致;垂直速度、假相当位温和水汽通量散度的增大和减小,可作为降水增大和减弱的重要依据之一;暴雨区主要落在700 h Pa螺旋度场大值区内,所以螺旋度分析可为台风暴雨落区预报提供参考依据。展开更多
基金the“Research and Development for Numerical Weather Prediction”and“Support to Enhancement of Convergence Technology of Analysis and Forecast on Severe Weather”under Grant(KMA2018-00122)the Korea Meteorological Administration Research and Development Program
文摘To understand structural changes and forecast error,a case study of binary typhoons in the western North Pacific(WNP)of 2018 was investigated using best track and reanalysis data.Soulik was generated on August 16 and Cimaron was generated on August 18,respectively.The 19 th typhoon Soulik and 20 th typhoon Cimaron co-existed from August 18 to 24 and approached each other.Soulik was located on the western side and Cimaron was located on the eastern side of the WNP.They were located approximately 1300 km from each other at 00 UTC August 22.The Soulik structure began changing around August 22 and became weak and slow,while Cimaron maintained its intensity,size,and moving speed.This observational evidence is likely caused by the binary interaction between two typhoons within a certain distance and environmental steering flow,such as the location of the North Pacific high and strong jet stream of the northern flank of the North Pacific high.Soulik was initially forecasted to make landfall and reach Seoul;however,its track changed from northward to northeastward from August 21 to 23 according to both official guidance and unified model(UM).Four global numerical weather prediction models forecasted different tracks of Soulik.UM and JGSM forecasted a northward track whereas ECMWF and GFS showed a northeastward track for 12 UTC August 21 through 12 UTC August 24.The latter models were similar to the best track.The track forecast error and spread of Soulik were larger than those of Cimaron.The mean absolute error of the maximum wind speed of Soulik was similar to the average of total typhoons in 2018.
文摘利用常规气象观测资料、NCEP再分析资料、卫星云图和雷达回波等资料,采用多种物理量诊断分析方法,对路径相似、在闽南地区产生特大暴雨的1308号台风"西马仑"和1407号台风"海贝思"的环流形势特征、云系结构特征及水汽、动力、热力条件进行了对比分析。结果表明:"西马仑"的过程特点是雨强大、降水时间集中,而"海贝思"的特点则是雨强小、降水时间长;"西马仑"云系结构紧密,属中尺度对流云团降水,而"海贝思"云系结构松散,其外围的螺旋云带产生的列车效应是产生特大暴雨的重要原因;两个台风都具有低空急流、风速辐合、低层辐合高层辐散流场等有利于产生特大暴雨的环流形势特征;两个台风都存在低空偏东风和偏南风急流,两支急流为暴雨区提供了充足的水汽条件,低空急流较强的时段与强降水时段相对应;台风中心附近强辐合辐散区的建立和维持是产生特大暴雨重要的动力条件,水汽辐合区的面积和强度与暴雨区范围和降水强度相吻合;垂直速度大值区的维持时间与强降水的维持时间相一致;垂直速度、假相当位温和水汽通量散度的增大和减小,可作为降水增大和减弱的重要依据之一;暴雨区主要落在700 h Pa螺旋度场大值区内,所以螺旋度分析可为台风暴雨落区预报提供参考依据。