Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic t...Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic test pattern generation (ATPG). In addition, ATPG needs to deal with new defects caused by process variation when IC is shrinking. To reduce the computation effort of ATPG, test generation could be started earlier at higher abstraction level, which is in line with top-down design methodology that has become more popular nowadays. In this research, we employ Chen’s high-level fault model in the high-level ATPG. Besides shorter ATPG time as shown in many previous works, our study showed that high-level ATPG also contributes to test compaction. This is because most of the high-level faults correlate with the gate-level collapsed faults especially at input/output of the modules in a circuit. The high-level ATPG prototype used in our work is mainly composed by constraint-driven test generation engine and fault simulation engine. Experimental result showed that more reduced/compact test set can be generated from the high-level ATPG.展开更多
In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU)...In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU), media access control (MAC) circuit and embedded memories such as static random access memory (SRAM), read only memory (ROM) and flash are all integrated together. In order to achieve high fault coverage, at the same time with low test power, different DFT techniques are adopted for different circuits: the scan circuit that reduces switching activity is implemented for digital logic circuits; BIST-based method is employed for the on-chip SRAM and ROM. According to the fault-modeling of embedded flash, we resort to a March-like method for flash built in self test (BIST). By all means above, the result shows that the fault coverage may reach 97%, and the SoC chip is implemented successfully by using 0.25 μm two-poly four-metal mixed signal complementary metal oxide semiconductor (CMOS) technology, the die area is 4.8×4.6 mm^2. Test results show that the maximum throughput of Ethemet packets may reach 7Mb·s^1.展开更多
文摘Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic test pattern generation (ATPG). In addition, ATPG needs to deal with new defects caused by process variation when IC is shrinking. To reduce the computation effort of ATPG, test generation could be started earlier at higher abstraction level, which is in line with top-down design methodology that has become more popular nowadays. In this research, we employ Chen’s high-level fault model in the high-level ATPG. Besides shorter ATPG time as shown in many previous works, our study showed that high-level ATPG also contributes to test compaction. This is because most of the high-level faults correlate with the gate-level collapsed faults especially at input/output of the modules in a circuit. The high-level ATPG prototype used in our work is mainly composed by constraint-driven test generation engine and fault simulation engine. Experimental result showed that more reduced/compact test set can be generated from the high-level ATPG.
基金Supported by the National High Technology Research and Development Program of China (2006AA01Z226)
文摘In this paper, an Ethernet controller SoC solution and its low power design for testability (DFT) for information appliances are presented. On a single chip, an enhanced one-cycle 8-bit micro controller unit (MCU), media access control (MAC) circuit and embedded memories such as static random access memory (SRAM), read only memory (ROM) and flash are all integrated together. In order to achieve high fault coverage, at the same time with low test power, different DFT techniques are adopted for different circuits: the scan circuit that reduces switching activity is implemented for digital logic circuits; BIST-based method is employed for the on-chip SRAM and ROM. According to the fault-modeling of embedded flash, we resort to a March-like method for flash built in self test (BIST). By all means above, the result shows that the fault coverage may reach 97%, and the SoC chip is implemented successfully by using 0.25 μm two-poly four-metal mixed signal complementary metal oxide semiconductor (CMOS) technology, the die area is 4.8×4.6 mm^2. Test results show that the maximum throughput of Ethemet packets may reach 7Mb·s^1.