The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.Wi...The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.With an orbit altitude of approximately 36 000 km,the orbit motion and orbit disturbance effects of GEOCSAR behave differently from those of the conventional spaceborne SAR.In this paper,we analyze the effects of orbit errors on GEOCSAR imaging and interferometric processing.First,we present the GEOCSAR imaging geometry and the orbit errors model based on perturbation analysis.Then,we give the GEOCSAR signal formulation based on imaging geometry,and analyze the effect of the orbit error on the output focused signal.By interferometric processing on the 3D reconstructed images,the relationship between satellite orbit errors and the interferometric phase is deduced.Simulations demonstrate the effects of orbit errors on the GEOCSAR images,interferograms,and the deformations.The conclusions are that the required relative accuracy of orbit estimation should be at centimeter level for GEOCSAR imaging at L-band,and that millimeter-scale accuracy is needed for GEOCSAR interferometric processing.展开更多
An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage traje...An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.展开更多
基金Project(No.2009CB724003) supported by the National Basic Re-search Program (973) of China
文摘The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.With an orbit altitude of approximately 36 000 km,the orbit motion and orbit disturbance effects of GEOCSAR behave differently from those of the conventional spaceborne SAR.In this paper,we analyze the effects of orbit errors on GEOCSAR imaging and interferometric processing.First,we present the GEOCSAR imaging geometry and the orbit errors model based on perturbation analysis.Then,we give the GEOCSAR signal formulation based on imaging geometry,and analyze the effect of the orbit error on the output focused signal.By interferometric processing on the 3D reconstructed images,the relationship between satellite orbit errors and the interferometric phase is deduced.Simulations demonstrate the effects of orbit errors on the GEOCSAR images,interferograms,and the deformations.The conclusions are that the required relative accuracy of orbit estimation should be at centimeter level for GEOCSAR imaging at L-band,and that millimeter-scale accuracy is needed for GEOCSAR interferometric processing.
文摘An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.