The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produce...The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the inte-grability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former does. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.展开更多
We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interac...We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interaction structure. Plane metal meshes are used as upstream and downstream mirrors of the resonator. The general design parameters are presented. We analyzed the spontaneous emission and stimulated emission in the oscillator using these parameters.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the inte-grability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former does. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.
基金Supported by Major State Basic Research Development Program of China (2002CB713600)
文摘We present a design study of a free electron laser (FEL) oscillator for high power THz source experiments on the basis of the Shanghai femtosecond accelerator device. A circular groove guide is used as a new interaction structure. Plane metal meshes are used as upstream and downstream mirrors of the resonator. The general design parameters are presented. We analyzed the spontaneous emission and stimulated emission in the oscillator using these parameters.