Influence of the turbulence intensity and turbulence length scale on the hydrodynamic characteristics and heat transfer of a circular cylinder, streamlined by a viscous fluid flow, is numerically studied. We take the ...Influence of the turbulence intensity and turbulence length scale on the hydrodynamic characteristics and heat transfer of a circular cylinder, streamlined by a viscous fluid flow, is numerically studied. We take the Reynolds number of the oncoming flow equal to 4×10^4, the turbulence intensity Tuf and the dimensionless turbulence length scale L-f varying from 1.0% to 40% and from 0.25 to 4.0, respectively. We confirmed that the increase of Tuf leads to the suppression of the periodic vortex shedding from the cylinder surface, and as a result the stationary mode of streamlining is formed. Consequently, with the increasing turbulence intensity directly in front of the cylinder Tu*, the amplitude of the lift coefficient decreases monotonically. Nevertheless, the time-averaged drag coefficient of the streamlined cylinder decreases at Tu*〈6.0%, and increases at Tu*〉9.0%. The dependence of the average Nusselt number on Tu* is near-linear, and with the increasing turbulence intensity, the Nusselt number rises. However, the change of the average Nusselt number depending on L-f is non-monotonic and at Lf=l.0, the value reaches its maximum展开更多
To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, bas...To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, based on the Biot-Savart law and Ampere's rule, the magnetic induction generated by a straight current carrying conductor and a current loop is discussed, respectively. Then the novel coil winding method is developed by adjusting the location of inhomogeneous joints. The joints are periodically scattered along the circumferential direction and symmetrically designed around the central axis.Numerical results show that the quite non-uniform temperature in the base of pot at the circular direction is effectively improved by using the proposed winding method. The potential danger produced by high temperature at some region of coils plate is minimized.It is energy-efficient and safe for residential appliances.展开更多
文摘Influence of the turbulence intensity and turbulence length scale on the hydrodynamic characteristics and heat transfer of a circular cylinder, streamlined by a viscous fluid flow, is numerically studied. We take the Reynolds number of the oncoming flow equal to 4×10^4, the turbulence intensity Tuf and the dimensionless turbulence length scale L-f varying from 1.0% to 40% and from 0.25 to 4.0, respectively. We confirmed that the increase of Tuf leads to the suppression of the periodic vortex shedding from the cylinder surface, and as a result the stationary mode of streamlining is formed. Consequently, with the increasing turbulence intensity directly in front of the cylinder Tu*, the amplitude of the lift coefficient decreases monotonically. Nevertheless, the time-averaged drag coefficient of the streamlined cylinder decreases at Tu*〈6.0%, and increases at Tu*〉9.0%. The dependence of the average Nusselt number on Tu* is near-linear, and with the increasing turbulence intensity, the Nusselt number rises. However, the change of the average Nusselt number depending on L-f is non-monotonic and at Lf=l.0, the value reaches its maximum
基金supported by the National Natural Science Foundation of China under Grant No.41304119,No.41104097,and No.61201007the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120185120012the Oversea Academic Training Fund sponsored by China Scholarship Council and University of Electronic Science and Technology of China under Grant No.201306075027
文摘To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, based on the Biot-Savart law and Ampere's rule, the magnetic induction generated by a straight current carrying conductor and a current loop is discussed, respectively. Then the novel coil winding method is developed by adjusting the location of inhomogeneous joints. The joints are periodically scattered along the circumferential direction and symmetrically designed around the central axis.Numerical results show that the quite non-uniform temperature in the base of pot at the circular direction is effectively improved by using the proposed winding method. The potential danger produced by high temperature at some region of coils plate is minimized.It is energy-efficient and safe for residential appliances.