With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great ...With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.展开更多
Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel intern...Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel internal circulation iron-carbon micro-electrolysis(ICE)reactor to treat aniline wastewater.The effects of reaction time,pH,aeration rate and iron-carbon(Fe/C)ratio on the removal rate of aniline and the chemical oxygen demand were investigated using single-factor experiments.This process exhibited high aniline degradation performance of approximately 99.86% under optimal operating conditions(reaction time=20 min,pH=3,aeration rate=0.5 m3·h^(-1),and Fe/C=1:2).Based on the experimental results,the response surface method was applied to optimize the aniline removal rate.The Box–Behnken method was used to obtain the interaction effects of three main factors.The result showed that the reaction time had a dominant effect on the removal rate of aniline.The highest aniline removal rate was obtained at pH of 2,aeration rate of 0.5 m^(3)·h^(-1)and reaction time of 30 min.Under optional experimental conditions,the aniline content of effluent was reduced to 3 mg·L^(-1)and the removal rate was as high as 98.24%,within the 95% confidence interval(97.84%-99.32%)of the predicted values.The solution was treated and the reaction intermediates were identified by high-performance liquid chromatography,ultraviolet-visible spectroscopy,Fourier-transform infrared spectroscopy,gas chromatography-mass spectrometry,and ion chromatography.The main intermediates were phenol,benzoquinone,and carboxylic acid.These were used to propose the potential mechanism of aniline degradation in the ICE reactor.The results obtained in this study provide optimized conditions for the treatment of industrial wastewater containing aniline and can strengthen the understanding of the degradation mechanism of iron-carbon micro-electrolysis.展开更多
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim...Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.展开更多
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Rece...Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers;the most prominent is circulating tumor DNA(ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction(PCR) [emulsion PCR(ePCR), digital PCR(dPCR), and bead, emulsion, amplification, magnetic(BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection,treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations(either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1;2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF;3) DNA methylation(RASSF1A, SEPT9, KMT2C and CCNA2);4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1;and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results.Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.展开更多
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-...The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.展开更多
Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D...Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D(25(OH)D)levels and mental disorders.The data used for the MR analysis were derived from the summary genome-wide association studies(GWAS)database for VC and 25(OH)D and from the Finn Gen consortium for fourteen mental disorders.Based on the inverse variance weighted(IVW)method,we found a potential causal association between circulating VC and anxiety disorders(IVW:OR=1.139,95%CI:1.023-1.269,P=0.018).However,no causal association was found between VC or 25(OH)D and other mental disorders(P>0.05).In the reverse MR analysis,individuals with Alzheimer’s disease was causally associated with higher concentrations of circulating VC(P=0.012),while individuals with anxiety disorders had a negative association between the concentrations of 25(OH)D(P=0.012).However,the current evidence does not support a causal relationship between VC or 25(OH)D and other mental disorders.In addition,there was no causal association between circulating VC and 25(OH)D(P>0.05).Future studies are needed to confirm these findings and to elucidate the mechanisms of potential causality.展开更多
Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due...Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due to limitations in tumor antigen selection and delivery methods.Tumor vaccines often fail to elicit a sufficiently robust immune response against progressive tumors,thereby limiting their clinical efficacy.In this study,we developed a nanoparticle-based tumor vaccine,OVA@HA-PEI,utilizing ovalbumin(OVA)as the presenting antigen and hyaluronic acid(HA)and polyethyleneimine(PEI)as adjuvants and carriers.This formulation significantly enhanced the proliferation of immune cells and cytokines,such as CD3,CD8,interferon-,and tumor necrosis factor-,in vivo,effectively activating an immune response against B16–F10 tumors.In vivofluorescenceflow cytometry(IVFC)has already become an effective method for monitoring circulating tumor cells(CTCs)due to its direct,noninvasive,and long-term detection capabilities.Our study utilized a laboratory-constructed IVFC system to monitor the immune processes induced by the OVA@HA-PEI tumor vaccine and an anti-programmed death-1(PD-1)antibody.The results demonstrated that the combined treatment of OVA@HA-PEI and anti-PD-1 antibody significantly improved the survival time of mice compared to anti-PD-1 antibody treatment alone.Additionally,this combination therapy substantially reduced the number of CTCs in vivo,increased the clearance rate of CTCs by the immune system,and slowed tumor progression.Thesefindings greatly enhance the clinical application prospects of IVFC and tumor vaccines.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
BACKGROUND Circulating tumor cell(CTC)count and neutrophil-to-lymphocyte ratio(NLR)are both closely associated with the prognosis of hepatocellular carcinoma(HCC).AIM To investigate the prognostic value of combining t...BACKGROUND Circulating tumor cell(CTC)count and neutrophil-to-lymphocyte ratio(NLR)are both closely associated with the prognosis of hepatocellular carcinoma(HCC).AIM To investigate the prognostic value of combining these two indicators in HCC.METHODS Clinical data were collected from patients with advanced HCC who received im-mune therapy combined with targeted therapy at the Department of Oncology,the Affiliated Hospital of Southwest Medical University,Sichuan,China,from 2021 to 2023.The optimal cutoff values for CTC programmed death-ligand 1(PD-L1)(+)>1 or CTC PD-L1(+)≤1 and NLR>3.89 or NLR≤3.89 were evaluated using X-Tile software.Patients were categorized into three groups based on CTC PD-L1(+)counts and NLR:CTC-NLR(0),CTC-NLR(1),and CTC-NLR(2).The relationship between CTC-NLR and clinical variables as well as survival rates was assessed.RESULTS Patients with high CTC PD-L1(+)expression or NLR at baseline had shorter median progression-free survival(m-PFS)and median overall survival(mOS)than those with low levels of CTC PD-L1(+)or NLR(P<0.001).Mean-while,patients in the CTC-NLR(2)group showed a significant decrease in mPFS and mOS.Cox regression analysis revealed that alpha-fetoprotein(AFP),CTC PD-L1(+),and CTC-NLR were independent predictors of OS.The time-dependent receiver operating characteristic curve showed that the area under the curve of CTC-NLR at 12 months(0.821)and 18 months(0.821)was superior to that of AFP and CTC PD-L1(+).CONCLUSION HCC patients with high CTC PD-L1(+)or NLR expression tend to exhibit poor prognosis,and a high baseline CTC-NLR score may indicate low survival.CTC-NLR may serve as an effective prognostic indicator for patients with advanced HCC receiving immunotherapy combined with targeted therapy.展开更多
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r...BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.展开更多
In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Clinical Oncology.Pancreatic cancer is the fourth most common cause of cancer-related mortality and has ...In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Clinical Oncology.Pancreatic cancer is the fourth most common cause of cancer-related mortality and has the lowest survival rate among all solid cancers.It causes 227000 deaths annually worldwide,and the 5-year survival rate is very low due to early metastasis,which is 4.6%.Cancer survival increases with better knowledge of risk factors and early and accurate diagnosis.Circulating tumor cells(CTCs)are tumor cells that intravasate from the primary tumor or metastasis foci into the peripheral blood circulation system spontan-eously or during surgical operations.Detection of CTC in blood is promising for early diagnosis.In addition,studies have associated high CTC levels with a more advanced stage,and more intensive treatments should be considered in cases with high CTC.In tumors that are considered radiologically resectable,it may be of critical importance in detecting occult metastases and preventing unnecessary surgeries.展开更多
Pancreatic cancer is associated with a poor prognosis,even in the early stages,mainly due to metastatic progression.New diagnostic techniques that predict unfavorable outcomes are needed in order to improve treatment ...Pancreatic cancer is associated with a poor prognosis,even in the early stages,mainly due to metastatic progression.New diagnostic techniques that predict unfavorable outcomes are needed in order to improve treatment strategies.Circulating tumor cells(CTCs)are showing promising results as a predictive biomarker for various tumors.In this editorial we comment on the article by Zhang et al,who published the first systematic review and meta-analysis evaluating the prognostic value of CTCs as biomarkers in early-stage pancreatic cancer patients undergoing surgery.CTCs were detected in peripheral or central venous system blood,before or during surgery.Positive CTCs showed a correlation with decreased overall survival and decreased relapse-free,disease-free and progression-free survival in this meta-analysis.However,the heterogeneity was significant.The authors suggest that this result was related to the separation methods used between studies,but other differences such as the margin status or the neoadjuvant and adjuvant treatments used are also important to consider.CTCs may be a potential prognostic biomarker in pancreatic cancer patients,but it is necessary to compare and standardize the platforms used to isolate CTCs,to compare different biomarkers from liquid biopsy and to determine the impact on prognosis when therapeutic changes are made based on CTCs levels.展开更多
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
Liquid biopsy,including both circulating tumor cells and circulating tumor DNA,is becoming more popular as a diagnostic tool in the clinical management of breast cancer.Elevated concentrations of these biomarkers duri...Liquid biopsy,including both circulating tumor cells and circulating tumor DNA,is becoming more popular as a diagnostic tool in the clinical management of breast cancer.Elevated concentrations of these biomarkers during cancer treatment may be used as markers for cancer progression as well as to understand the mechanisms underlying metastasis and treatment resistance.Thus,these circulating markers serve as tools for cancer assessing and monitoring through a simple,non-invasive blood draw.However,despite several study results currently noting a potential clinical impact of ctDNA mutation tracking,the method is not used clinically in cancer diagnosis among patients and more studies are required to confirm it.This review focuses on understanding circulating tumor biomarkers,especially in breast cancer.展开更多
Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circu...Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.展开更多
The reduction of nitrate using internal circulation micro-electrolysis te chnology(ICE)was investigated.The effect of the reaction time,initial pH,Fe/C ratio,and aeration rate on the nitrate reduction was investigated...The reduction of nitrate using internal circulation micro-electrolysis te chnology(ICE)was investigated.The effect of the reaction time,initial pH,Fe/C ratio,and aeration rate on the nitrate reduction was investigated using a single factor experiment.Based on the results of the single factor experiment,a response surface methodology(RSM)was applied to optimize the N2 generation selectivity.The effects and interactions of three independent variables were estimated using a Box-Behnken design.Using the RSM analysis,a quadratic polynomial model with optimal conditions at pH=8.8,Fe/C=1:1,and an aeration rate of 30 L·min-1 was developed by means of the regre ssion analysis of the experimental data.Using the RSM optimization,the optimal conditions yielded a N2 generation selectivity of 72.0%,which is in good agreement with experimental result(73.2%±0.5%)and falls within the 95%confidence interval(IC:66.8%-77.3%)of the model results.This indicates that the model obtained in this study effectively predicts the N2 generation selectivity for nitrate reduction by the ICE process,thus providing a theoretical basis for process design.展开更多
Introduction: Tuberculosis is caused by infection with Mycobacterium tuberculosis. Looking at the evolution of the bacterium gene due to mutation is crucial to identify species circulating among patients in an area. W...Introduction: Tuberculosis is caused by infection with Mycobacterium tuberculosis. Looking at the evolution of the bacterium gene due to mutation is crucial to identify species circulating among patients in an area. WHO speculated that tuberculosis is caused by M. tuberculosis (MTB), but identification of the strains of MTB circulating in a particular area is important for the management of MTB and to identify pulmonary infections caused by non-tuberculosis mycobacterium. Contact tracing of drug resistant MTB in circulation in an area is also an important procedure of MTB therapeutic choice. Aim: This study aimed to isolate and identify Mycobacterium species circulating in Bayelsa State, Nigeria. Materials and Methods: A total of 102 sputum samples collected from MTB patients were cultured in Lowenstein Jensen (LJ) solid media. Isolates on LJ media were confirmed using Zeihl Nelseen staining method for AFB and Standard Diagnosis Bioline TB Ag MPT64 Rapid test kit. The 16s rRNA gene amplification, agarose gel electrophoresis, and gene sequencing were conducted. Phylogenic analysis and evolutional distances of the strains are computed using the Juke-cantor method. Result: Out of 102 sputum samples examined 15 (14.7%) had growth of Mycobacterium species (AFB positive). The extracted DNA of MTB amplified on agarose gel electrophoresis aligned horizontally at lanes 1 - 15 showing 16S gene band (1500 bp). Two 2 (2.0%) are non-tuberculosis Mycobacteria species, while 13 (12.7%) were M. tuberculosis. The non-tuberculosis Mycobacterium species isolated are Mycobacteriode abscesses and Mycobacterium kansassii strain FDAARGOS 1534. The tuberculosis strains are Mycobacterium tuberculosis MG003 and R2092 but the predominant strain was MG003. The degree of the genetic evolution of the non-MTB Mycobacterium kansassii strain FDAARGOS 1534 was 75.4%. Conclusion: The two major strains of Mycobacterium tuberculosis (MTB) circulating in Bayelsa State are MTB MG003 and MTB R2092;MTB MG003 was predominant. The non-tuberculosis species are Mycobacteriode abscesses and Mycobacterium kansasii.展开更多
Circulating tumor cells(CTCs)are neoplastic cells that are detached from primary tumors and enter circulation.Enumeration and characterization of CTCs are of significance in cancer diagnosis,prognosis,and treatment mo...Circulating tumor cells(CTCs)are neoplastic cells that are detached from primary tumors and enter circulation.Enumeration and characterization of CTCs are of significance in cancer diagnosis,prognosis,and treatment monitoring.CTC survival in the bloodstream is a limiting step for the development of metastases in distant organs.Recent technological advances,especially in single-cell molecular analyses have uncovered heterogeneous CTC survival mechanisms.Undergoing epithelial-to-mesenchymal transition(EMT),increasing stem cell-like properties,and forming cell clusters enable CTCs to adapt to the harsh microenvironment of the circulation.Expressing and releasing several immunosuppressive molecules help CTCs escape from anti-cancer immune mechanisms.This review article summarizes the biological characteristics of CTCs and focuses on the recent understanding of the mechanisms by which CTCs survive in circulation.Additionally,the clinical and therapeutic implications of CTCs are discussed.展开更多
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘With the rapid development of science and technology,cell-free DNA(cfDNA)is rapidly becoming an important biomarker for tumor diagnosis,monitoring and prognosis,and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine.cfDNA is the total amount of free DNA in the systemic circulation,including DNA fragments derived from tumor cells and all other somatic cells.Tumor cells release fragments of DNA into the bloodstream,and this source of cfDNA is called circulating tumor DNA(ctDNA).cfDNA detection has become a major focus in the field of tumor research in recent years,which provides a new opportunity for non-invasive diagnosis and prognosis of cancer.In this paper,we discuss the limitations of the study on the origin and dynamics analysis of ctDNA,and how to solve these problems in the future.Although the future faces major challenges,it also con-tains great potential.
基金supported by the National Natural Science Foundation of China(21677018)the Joint Fund of the Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)the Cross-Disciplinary Science Foundation from Beijing Institute of Petrochemical Technology(BIPTCSF–22032205003/014)。
文摘Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel internal circulation iron-carbon micro-electrolysis(ICE)reactor to treat aniline wastewater.The effects of reaction time,pH,aeration rate and iron-carbon(Fe/C)ratio on the removal rate of aniline and the chemical oxygen demand were investigated using single-factor experiments.This process exhibited high aniline degradation performance of approximately 99.86% under optimal operating conditions(reaction time=20 min,pH=3,aeration rate=0.5 m3·h^(-1),and Fe/C=1:2).Based on the experimental results,the response surface method was applied to optimize the aniline removal rate.The Box–Behnken method was used to obtain the interaction effects of three main factors.The result showed that the reaction time had a dominant effect on the removal rate of aniline.The highest aniline removal rate was obtained at pH of 2,aeration rate of 0.5 m^(3)·h^(-1)and reaction time of 30 min.Under optional experimental conditions,the aniline content of effluent was reduced to 3 mg·L^(-1)and the removal rate was as high as 98.24%,within the 95% confidence interval(97.84%-99.32%)of the predicted values.The solution was treated and the reaction intermediates were identified by high-performance liquid chromatography,ultraviolet-visible spectroscopy,Fourier-transform infrared spectroscopy,gas chromatography-mass spectrometry,and ion chromatography.The main intermediates were phenol,benzoquinone,and carboxylic acid.These were used to propose the potential mechanism of aniline degradation in the ICE reactor.The results obtained in this study provide optimized conditions for the treatment of industrial wastewater containing aniline and can strengthen the understanding of the degradation mechanism of iron-carbon micro-electrolysis.
基金Financial support from the National Natural Science Foundation of China (22022816 and 22078358)
文摘Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
基金supported by National Natural Science Foundation of China (No. 31902287)Key R&D and Promotion Projects of Henan Province (No. 242102310467, No. 242102310240 and No. 23210 2310132)Henan Department of Public Health (No. LHGJ20221021)。
文摘Hepatocellular carcinoma(HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers;the most prominent is circulating tumor DNA(ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction(PCR) [emulsion PCR(ePCR), digital PCR(dPCR), and bead, emulsion, amplification, magnetic(BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection,treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations(either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1;2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF;3) DNA methylation(RASSF1A, SEPT9, KMT2C and CCNA2);4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1;and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results.Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.
基金Financial support of this work by National Natural Science Foundation of China(51976037)。
文摘The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.
基金funded by the Nactional Natural Science Foundation of China(81872618)。
文摘Mental disorders seriously affect people’s health and social stability.This Mendelian randomization(MR)study was designed to investigate the causal relationship between circulating vitamin C(VC)or 25-hydroxyvitamin D(25(OH)D)levels and mental disorders.The data used for the MR analysis were derived from the summary genome-wide association studies(GWAS)database for VC and 25(OH)D and from the Finn Gen consortium for fourteen mental disorders.Based on the inverse variance weighted(IVW)method,we found a potential causal association between circulating VC and anxiety disorders(IVW:OR=1.139,95%CI:1.023-1.269,P=0.018).However,no causal association was found between VC or 25(OH)D and other mental disorders(P>0.05).In the reverse MR analysis,individuals with Alzheimer’s disease was causally associated with higher concentrations of circulating VC(P=0.012),while individuals with anxiety disorders had a negative association between the concentrations of 25(OH)D(P=0.012).However,the current evidence does not support a causal relationship between VC or 25(OH)D and other mental disorders.In addition,there was no causal association between circulating VC and 25(OH)D(P>0.05).Future studies are needed to confirm these findings and to elucidate the mechanisms of potential causality.
基金supported by the National Key Research and Development Program of China,Grant Number:2021YFF0502900,2019YFC1604604National Natural Science Foundation of China,Grant Number:62075013,62027824.
文摘Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due to limitations in tumor antigen selection and delivery methods.Tumor vaccines often fail to elicit a sufficiently robust immune response against progressive tumors,thereby limiting their clinical efficacy.In this study,we developed a nanoparticle-based tumor vaccine,OVA@HA-PEI,utilizing ovalbumin(OVA)as the presenting antigen and hyaluronic acid(HA)and polyethyleneimine(PEI)as adjuvants and carriers.This formulation significantly enhanced the proliferation of immune cells and cytokines,such as CD3,CD8,interferon-,and tumor necrosis factor-,in vivo,effectively activating an immune response against B16–F10 tumors.In vivofluorescenceflow cytometry(IVFC)has already become an effective method for monitoring circulating tumor cells(CTCs)due to its direct,noninvasive,and long-term detection capabilities.Our study utilized a laboratory-constructed IVFC system to monitor the immune processes induced by the OVA@HA-PEI tumor vaccine and an anti-programmed death-1(PD-1)antibody.The results demonstrated that the combined treatment of OVA@HA-PEI and anti-PD-1 antibody significantly improved the survival time of mice compared to anti-PD-1 antibody treatment alone.Additionally,this combination therapy substantially reduced the number of CTCs in vivo,increased the clearance rate of CTCs by the immune system,and slowed tumor progression.Thesefindings greatly enhance the clinical application prospects of IVFC and tumor vaccines.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
基金The research protocol was approved by the Clinical Trial Ethics Committee of the Affiliated Hospital of Southwest Medical University(approval number:KY2021063)registered in the Chinese Clinical Trial Registry(registration number:ChiCTR2100044198).
文摘BACKGROUND Circulating tumor cell(CTC)count and neutrophil-to-lymphocyte ratio(NLR)are both closely associated with the prognosis of hepatocellular carcinoma(HCC).AIM To investigate the prognostic value of combining these two indicators in HCC.METHODS Clinical data were collected from patients with advanced HCC who received im-mune therapy combined with targeted therapy at the Department of Oncology,the Affiliated Hospital of Southwest Medical University,Sichuan,China,from 2021 to 2023.The optimal cutoff values for CTC programmed death-ligand 1(PD-L1)(+)>1 or CTC PD-L1(+)≤1 and NLR>3.89 or NLR≤3.89 were evaluated using X-Tile software.Patients were categorized into three groups based on CTC PD-L1(+)counts and NLR:CTC-NLR(0),CTC-NLR(1),and CTC-NLR(2).The relationship between CTC-NLR and clinical variables as well as survival rates was assessed.RESULTS Patients with high CTC PD-L1(+)expression or NLR at baseline had shorter median progression-free survival(m-PFS)and median overall survival(mOS)than those with low levels of CTC PD-L1(+)or NLR(P<0.001).Mean-while,patients in the CTC-NLR(2)group showed a significant decrease in mPFS and mOS.Cox regression analysis revealed that alpha-fetoprotein(AFP),CTC PD-L1(+),and CTC-NLR were independent predictors of OS.The time-dependent receiver operating characteristic curve showed that the area under the curve of CTC-NLR at 12 months(0.821)and 18 months(0.821)was superior to that of AFP and CTC PD-L1(+).CONCLUSION HCC patients with high CTC PD-L1(+)or NLR expression tend to exhibit poor prognosis,and a high baseline CTC-NLR score may indicate low survival.CTC-NLR may serve as an effective prognostic indicator for patients with advanced HCC receiving immunotherapy combined with targeted therapy.
文摘BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.
文摘In this editorial we comment on the article by Zhang et al published in the recent issue of the World Journal of Clinical Oncology.Pancreatic cancer is the fourth most common cause of cancer-related mortality and has the lowest survival rate among all solid cancers.It causes 227000 deaths annually worldwide,and the 5-year survival rate is very low due to early metastasis,which is 4.6%.Cancer survival increases with better knowledge of risk factors and early and accurate diagnosis.Circulating tumor cells(CTCs)are tumor cells that intravasate from the primary tumor or metastasis foci into the peripheral blood circulation system spontan-eously or during surgical operations.Detection of CTC in blood is promising for early diagnosis.In addition,studies have associated high CTC levels with a more advanced stage,and more intensive treatments should be considered in cases with high CTC.In tumors that are considered radiologically resectable,it may be of critical importance in detecting occult metastases and preventing unnecessary surgeries.
文摘Pancreatic cancer is associated with a poor prognosis,even in the early stages,mainly due to metastatic progression.New diagnostic techniques that predict unfavorable outcomes are needed in order to improve treatment strategies.Circulating tumor cells(CTCs)are showing promising results as a predictive biomarker for various tumors.In this editorial we comment on the article by Zhang et al,who published the first systematic review and meta-analysis evaluating the prognostic value of CTCs as biomarkers in early-stage pancreatic cancer patients undergoing surgery.CTCs were detected in peripheral or central venous system blood,before or during surgery.Positive CTCs showed a correlation with decreased overall survival and decreased relapse-free,disease-free and progression-free survival in this meta-analysis.However,the heterogeneity was significant.The authors suggest that this result was related to the separation methods used between studies,but other differences such as the margin status or the neoadjuvant and adjuvant treatments used are also important to consider.CTCs may be a potential prognostic biomarker in pancreatic cancer patients,but it is necessary to compare and standardize the platforms used to isolate CTCs,to compare different biomarkers from liquid biopsy and to determine the impact on prognosis when therapeutic changes are made based on CTCs levels.
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
文摘Liquid biopsy,including both circulating tumor cells and circulating tumor DNA,is becoming more popular as a diagnostic tool in the clinical management of breast cancer.Elevated concentrations of these biomarkers during cancer treatment may be used as markers for cancer progression as well as to understand the mechanisms underlying metastasis and treatment resistance.Thus,these circulating markers serve as tools for cancer assessing and monitoring through a simple,non-invasive blood draw.However,despite several study results currently noting a potential clinical impact of ctDNA mutation tracking,the method is not used clinically in cancer diagnosis among patients and more studies are required to confirm it.This review focuses on understanding circulating tumor biomarkers,especially in breast cancer.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.:82003710 and 82173808)the Natural Science Foundation of Guangdong Province(Grant Nos.:2020A1515010075 and 2021B1515020100)+3 种基金the Project of Educational Commission of Guangdong Province(Grant No.:2021ZDZX2012)the Guangzhou Basic and Applied Basic Research Project(Grant No.:2023A04J1163)the National Key Clinical Specialty Construction Project(Clinical Pharmacy)High-Level Clinical Key Specialty(Clinical Pharmacy)in Guangdong Province,China.
文摘Liquid biopsy is a technology that exhibits potential to detect cancer early,monitor therapies,and predict cancer prognosis due to its unique characteristics,including noninvasive sampling and real-time analysis.Circulating tumor cells(CTCs)and extracellular vesicles(EVs)are two important components of circulating targets,carrying substantial disease-related molecular information and playing a key role in liquid biopsy.Aptamers are single-stranded oligonucleotides with superior affinity and specificity,and they can bind to targets by folding into unique tertiary structures.Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools.In this review,we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches.Then,we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection.Finally,we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
基金Supported by the National Natural Science Foundation of China(21677018)the Joint Fund of the Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024).
文摘The reduction of nitrate using internal circulation micro-electrolysis te chnology(ICE)was investigated.The effect of the reaction time,initial pH,Fe/C ratio,and aeration rate on the nitrate reduction was investigated using a single factor experiment.Based on the results of the single factor experiment,a response surface methodology(RSM)was applied to optimize the N2 generation selectivity.The effects and interactions of three independent variables were estimated using a Box-Behnken design.Using the RSM analysis,a quadratic polynomial model with optimal conditions at pH=8.8,Fe/C=1:1,and an aeration rate of 30 L·min-1 was developed by means of the regre ssion analysis of the experimental data.Using the RSM optimization,the optimal conditions yielded a N2 generation selectivity of 72.0%,which is in good agreement with experimental result(73.2%±0.5%)and falls within the 95%confidence interval(IC:66.8%-77.3%)of the model results.This indicates that the model obtained in this study effectively predicts the N2 generation selectivity for nitrate reduction by the ICE process,thus providing a theoretical basis for process design.
文摘Introduction: Tuberculosis is caused by infection with Mycobacterium tuberculosis. Looking at the evolution of the bacterium gene due to mutation is crucial to identify species circulating among patients in an area. WHO speculated that tuberculosis is caused by M. tuberculosis (MTB), but identification of the strains of MTB circulating in a particular area is important for the management of MTB and to identify pulmonary infections caused by non-tuberculosis mycobacterium. Contact tracing of drug resistant MTB in circulation in an area is also an important procedure of MTB therapeutic choice. Aim: This study aimed to isolate and identify Mycobacterium species circulating in Bayelsa State, Nigeria. Materials and Methods: A total of 102 sputum samples collected from MTB patients were cultured in Lowenstein Jensen (LJ) solid media. Isolates on LJ media were confirmed using Zeihl Nelseen staining method for AFB and Standard Diagnosis Bioline TB Ag MPT64 Rapid test kit. The 16s rRNA gene amplification, agarose gel electrophoresis, and gene sequencing were conducted. Phylogenic analysis and evolutional distances of the strains are computed using the Juke-cantor method. Result: Out of 102 sputum samples examined 15 (14.7%) had growth of Mycobacterium species (AFB positive). The extracted DNA of MTB amplified on agarose gel electrophoresis aligned horizontally at lanes 1 - 15 showing 16S gene band (1500 bp). Two 2 (2.0%) are non-tuberculosis Mycobacteria species, while 13 (12.7%) were M. tuberculosis. The non-tuberculosis Mycobacterium species isolated are Mycobacteriode abscesses and Mycobacterium kansassii strain FDAARGOS 1534. The tuberculosis strains are Mycobacterium tuberculosis MG003 and R2092 but the predominant strain was MG003. The degree of the genetic evolution of the non-MTB Mycobacterium kansassii strain FDAARGOS 1534 was 75.4%. Conclusion: The two major strains of Mycobacterium tuberculosis (MTB) circulating in Bayelsa State are MTB MG003 and MTB R2092;MTB MG003 was predominant. The non-tuberculosis species are Mycobacteriode abscesses and Mycobacterium kansasii.
基金supported by the Science Foundation of Fujian Province of China(2019J01596).
文摘Circulating tumor cells(CTCs)are neoplastic cells that are detached from primary tumors and enter circulation.Enumeration and characterization of CTCs are of significance in cancer diagnosis,prognosis,and treatment monitoring.CTC survival in the bloodstream is a limiting step for the development of metastases in distant organs.Recent technological advances,especially in single-cell molecular analyses have uncovered heterogeneous CTC survival mechanisms.Undergoing epithelial-to-mesenchymal transition(EMT),increasing stem cell-like properties,and forming cell clusters enable CTCs to adapt to the harsh microenvironment of the circulation.Expressing and releasing several immunosuppressive molecules help CTCs escape from anti-cancer immune mechanisms.This review article summarizes the biological characteristics of CTCs and focuses on the recent understanding of the mechanisms by which CTCs survive in circulation.Additionally,the clinical and therapeutic implications of CTCs are discussed.