A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrat...To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrated with the kinetic theory of granular flow.The solid circulation mechanism and gas leakage performance were studied in detail.The simulation results showed that in the start-up process,the solid circulation rate first increased to approximately 5 kg/s and then dropped to approximately 1.2 kg/s;this observation was related to the dynamic control of the pressure distribution.In this system,the gas leakage between the inertial separator,upper air reactor,and lower air reactor was restrained by adjusting the pressure difference,thus obtaining optimal gas flow paths.When the pressures at the outlets of the inertial separator,upper air reactor,and lower air were 7.4,11.0,and 14.6 kPa,respectively,the gas leakage ratio was less than 1%in the system.展开更多
In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity ...In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.展开更多
Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas...Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.展开更多
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.
基金The National Natural Science Foundation of China(No.51976034)China Postdoctoral Science Foundation(No.2020M681455)+2 种基金the National Key R&D Program of China(No.2018YFC1901200)Jiangsu Planned Projects for Postdoctoral Research Fundsthe Fundamental Research Funds for the Central Universities.
文摘To study the gas-solid flow characteristics in a chemical looping combustion system integrated with a moving bed air reactor,a 3D full-loop numerical model was established using the Eulerian-Eulerian approach integrated with the kinetic theory of granular flow.The solid circulation mechanism and gas leakage performance were studied in detail.The simulation results showed that in the start-up process,the solid circulation rate first increased to approximately 5 kg/s and then dropped to approximately 1.2 kg/s;this observation was related to the dynamic control of the pressure distribution.In this system,the gas leakage between the inertial separator,upper air reactor,and lower air reactor was restrained by adjusting the pressure difference,thus obtaining optimal gas flow paths.When the pressures at the outlets of the inertial separator,upper air reactor,and lower air were 7.4,11.0,and 14.6 kPa,respectively,the gas leakage ratio was less than 1%in the system.
文摘In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.
基金Supported by the National Natural Science Foundation of China(51076154)National Key Technology Research&Development Program of 12 th Five-year of China(2011BAD15B05)
文摘Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.