The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and th...This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).展开更多
The Bunsen reaction is the center reaction for both the sulfur–iodine water splitting cycle for hydrogen production and the novel hydrogen sulfide splitting cycle for hydrogen and sulfuric acid production from the su...The Bunsen reaction is the center reaction for both the sulfur–iodine water splitting cycle for hydrogen production and the novel hydrogen sulfide splitting cycle for hydrogen and sulfuric acid production from the sulfur-containing gases.This paper reviews the research progress of the Bunsen reaction in recent 10–15 years.Researches were initially focused on the optimization of the operating conditions of the conventional Bunsen reaction requiring excessive water and iodine to improve the products separation efficiency and to avoid the side reactions and iodine vapor deposition.Alternative methods including electrochemical methods,precipitation methods,and non-aqueous solvent methods had their respective advantages,but still faced challenges.In development of the technology of H2S splitting cycle,dissolving iodine in toluene solvent could render the Bunsen reaction to occur with the flowable I2 stream at ambient temperature such that the side reactions and iodine vaporization can be avoided and the corrosion hazard lessened.It also prevented the Bunsen reaction from using excessive iodine and water.The products from the Bunsen reaction including HI,H2SO4,H2O,and toluene could be directly electrolyzed.展开更多
The development of e cient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions(ORR, OER, and HER) is important for future energy conversion and energy storage devic...The development of e cient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions(ORR, OER, and HER) is important for future energy conversion and energy storage devices, for which both rechargeable Zn–air batteries and water splitting have raised great expectations. Herein, we report a single-phase bimetallic nickel cobalt sulfide((Ni,Co)S_2) as an e cient electrocatalyst for both OER and ORR. Owing to the synergistic combination of Ni and Co, the(Ni,Co)S_2 exhibits superior electrocatalytic performance for ORR, OER, and HER in an alkaline electrolyte, and the first principle calculation results indicate that the reaction of an adsorbed O atom with a H_2O molecule to form a *OOH is the potential limiting step in the OER. Importantly, it could be utilized as an advanced air electrode material in Zn–air batteries, which shows an enhanced charge–discharge performance(charging voltage of 1.71 V and discharge voltage of 1.26 V at 2 mA cm^(-2)), large specific capacity(842 mAh g_(Zn)^(-1) at 5 mA cm^(-2)), and excellent cycling stability(480 h). Interestingly, the(Ni,Co)S_2-based Zn–air battery can e ciently power an electrochemical water-splitting unit with(Ni,Co)S_2 serving as both the electrodes. This reveals that the prepared(Ni,Co)S_2 has promising applications in future energy conversion and energy storage devices.展开更多
Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly o...Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly on Ni foam,which act as multifunctional additive-free Ni3 S2@Ni electrode for supercapacitor and overall water splitting.Based on PVA-KOH gel electrolyte,the assembled all-solid-state Ni3 S2@Ni//AC asymmetric supercapacitor delivers a high areal energy density of 0.52 mWh cm^-2 at an areal power density of 9.02 MW cm^-2,and exhibits an excellent cycling stability with a capacitance retention ratio of 89%after 10000 GCD cycles at a current density of 30 mA cm^-2.For hydrogen evolution reaction and oxygen evolution reaction in 1 M KOH,Ni3 S2@Ni electrode achieves a benchmark of 10 mA cm^-2at overpotentials of 82 mV and 310 mV,respectively.Furthermore,the assembled Ni3 S2@Ni‖Ni3 S2@Ni electrolyzer for overall water splitting attains a current density of 10 mA cm^-2 at 1.61 V.The in-situ synthesis of Ni3 S2@Ni electrode enriches the applications of additive-free transition metal compounds in high-performance energy storage devices and efficient electrocatalysis.展开更多
The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in ...The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in 2003 using cross-correlation coefficient method, after determining the high-resolution hypocentral locations of the earthquake sequences using the double-difference earthquake location algorithm. The results indicated that ① The phenomena of S wave splitting are obvious in the two earthquake sequences, and the average polarization directions of fast wave in most stations are almost consistent with regional maximum horizontal compressive stress direction except the station Santai. There are bimodal fast directions in the polarization directions at station Santai and the mean polarization direction is N80°E, indicating an inconsistent phenomenon referred to regional maximum horizontal compressive stress direction. ② There is no apparent relation between delay time and focal depth in the sequences, but the polarization direction show different character in different delay time range. ③ The comparison of S wave splitting results in the two earthquake sequences show that the polarization direction in M=6.2 earthquake sequence is more scattered and its average fast direction is 20° larger than that of M=6.1 sequence, and the delay times between two sequences show a little difference. ④ The spatial variation in S wave splitting polarization direction may be due to the stress disturbance imposed by the M=6.2 and the M=6.1 mainshocks on regional background stress field.展开更多
Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4...Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
The shear wave splitting study is based on data of the 3 component digital seismograms. This was recorded at 3 sets of stations, which were set up after the Yaoan M S6 5 earthquake, near its epicenter. The results ind...The shear wave splitting study is based on data of the 3 component digital seismograms. This was recorded at 3 sets of stations, which were set up after the Yaoan M S6 5 earthquake, near its epicenter. The results indicate the following:①Shear wave splitting has been observed through analyzing 236 aftershock recordings within the shear wave window. ②The time delay was mostly in the range of 3 5~10 5ms/km and the average was 7 0ms/km.③The polarization direction of the fast split S wave was mostly in the range of N140°E~N164°E and the average was N152 4°E. ④The preferred polarization direction for the fast shear wave was different from the direction of the seismogenic structure of the mainshock (Maweijing fault) and the direction of the rupture of the aftershocks, but similar to the principal compressional axis of the regional stress field. ⑤Shear wave splitting for sequence of the aftershocks of the Yaoan earthquake was the result of anisotropy of EDA cracks controlled by stress field.展开更多
Background:Unfavorable fractures are among the most common complications of bilateral sagittal split ramus osteotomy(BSSRO).This study aimed to evaluate unfavorable fracture patterns during BSSRO and assess the relate...Background:Unfavorable fractures are among the most common complications of bilateral sagittal split ramus osteotomy(BSSRO).This study aimed to evaluate unfavorable fracture patterns during BSSRO and assess the related risk factors and treatment measures.Methods:The clinical records and radiographs of 679 patients(1358 sides)who underwent BSSRO at Shanghai Ninth People’s Hospital between September 2013 and December 2021 were examined.Results:Patients with unfavorable fractures who underwent surgical restoration were studied.The incidence of unfavorable fractures was 0.8%(n¼11),with the highest rate in the third year.The unfavorable fractures were divided into three types by location and clinical treatment:(1)SSRO could still be completed after buccal/lingual plate unfavorable fracture(0.6%,n=8);(2)condylar/coronoid process fractures/intermaxillary fixation needed(0.1%,n=2);(3)additional osteotomy required(0.07%,n=1).Conclusion:These results suggest that as a surgeon’s experience increases,the rate of unfavorable fractures may decrease.The novel classification of unfavorable fractures for SSRO might be useful for surgeons to make appropriate treatment choices during orthognathic surgery.展开更多
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金This project is supported by Science and Technology Foundation of Shanghai Higher Eduction,Doctoral Program Foundation of Higher Education in China.National Nature Science Foundation of China and Youth Science Foundation of Universities in Shanghai.
文摘This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).
基金financial supports from the National Natural Science Foundation of China(21576183)Natural Science and Technology Research Council of Canada(STPGP-350428-07)
文摘The Bunsen reaction is the center reaction for both the sulfur–iodine water splitting cycle for hydrogen production and the novel hydrogen sulfide splitting cycle for hydrogen and sulfuric acid production from the sulfur-containing gases.This paper reviews the research progress of the Bunsen reaction in recent 10–15 years.Researches were initially focused on the optimization of the operating conditions of the conventional Bunsen reaction requiring excessive water and iodine to improve the products separation efficiency and to avoid the side reactions and iodine vapor deposition.Alternative methods including electrochemical methods,precipitation methods,and non-aqueous solvent methods had their respective advantages,but still faced challenges.In development of the technology of H2S splitting cycle,dissolving iodine in toluene solvent could render the Bunsen reaction to occur with the flowable I2 stream at ambient temperature such that the side reactions and iodine vaporization can be avoided and the corrosion hazard lessened.It also prevented the Bunsen reaction from using excessive iodine and water.The products from the Bunsen reaction including HI,H2SO4,H2O,and toluene could be directly electrolyzed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11474137 and 11674143)Program for Changjiang Scholars and Innovative Research Team in University (IRT 16R35)+1 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. LZUMMM2018017, lzujbky-2018-121)the support of Ministry of Education (MOE2016-T2-2-138,Singapore),for research conducted at the National University of Singapore
文摘The development of e cient earth-abundant electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions(ORR, OER, and HER) is important for future energy conversion and energy storage devices, for which both rechargeable Zn–air batteries and water splitting have raised great expectations. Herein, we report a single-phase bimetallic nickel cobalt sulfide((Ni,Co)S_2) as an e cient electrocatalyst for both OER and ORR. Owing to the synergistic combination of Ni and Co, the(Ni,Co)S_2 exhibits superior electrocatalytic performance for ORR, OER, and HER in an alkaline electrolyte, and the first principle calculation results indicate that the reaction of an adsorbed O atom with a H_2O molecule to form a *OOH is the potential limiting step in the OER. Importantly, it could be utilized as an advanced air electrode material in Zn–air batteries, which shows an enhanced charge–discharge performance(charging voltage of 1.71 V and discharge voltage of 1.26 V at 2 mA cm^(-2)), large specific capacity(842 mAh g_(Zn)^(-1) at 5 mA cm^(-2)), and excellent cycling stability(480 h). Interestingly, the(Ni,Co)S_2-based Zn–air battery can e ciently power an electrochemical water-splitting unit with(Ni,Co)S_2 serving as both the electrodes. This reveals that the prepared(Ni,Co)S_2 has promising applications in future energy conversion and energy storage devices.
基金supported by the National Natural Science Foundation of China[grant no.51701022]。
文摘Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly on Ni foam,which act as multifunctional additive-free Ni3 S2@Ni electrode for supercapacitor and overall water splitting.Based on PVA-KOH gel electrolyte,the assembled all-solid-state Ni3 S2@Ni//AC asymmetric supercapacitor delivers a high areal energy density of 0.52 mWh cm^-2 at an areal power density of 9.02 MW cm^-2,and exhibits an excellent cycling stability with a capacitance retention ratio of 89%after 10000 GCD cycles at a current density of 30 mA cm^-2.For hydrogen evolution reaction and oxygen evolution reaction in 1 M KOH,Ni3 S2@Ni electrode achieves a benchmark of 10 mA cm^-2at overpotentials of 82 mV and 310 mV,respectively.Furthermore,the assembled Ni3 S2@Ni‖Ni3 S2@Ni electrolyzer for overall water splitting attains a current density of 10 mA cm^-2 at 1.61 V.The in-situ synthesis of Ni3 S2@Ni electrode enriches the applications of additive-free transition metal compounds in high-performance energy storage devices and efficient electrocatalysis.
基金National Program on Key Basic Projects (2004CB418406), Program for the Tenth Five-Year Plan of China(2004BA601B01-04-03)and Joint Seismological Science Foundation of China (606042).
文摘The polarization direction of fast wave and the delay time between fast and slow wave were measured for two earthquake sequences occurred continuously on 21 July (M=6.2) and 16 October (M=6.1) in Dayao, Yunnan in 2003 using cross-correlation coefficient method, after determining the high-resolution hypocentral locations of the earthquake sequences using the double-difference earthquake location algorithm. The results indicated that ① The phenomena of S wave splitting are obvious in the two earthquake sequences, and the average polarization directions of fast wave in most stations are almost consistent with regional maximum horizontal compressive stress direction except the station Santai. There are bimodal fast directions in the polarization directions at station Santai and the mean polarization direction is N80°E, indicating an inconsistent phenomenon referred to regional maximum horizontal compressive stress direction. ② There is no apparent relation between delay time and focal depth in the sequences, but the polarization direction show different character in different delay time range. ③ The comparison of S wave splitting results in the two earthquake sequences show that the polarization direction in M=6.2 earthquake sequence is more scattered and its average fast direction is 20° larger than that of M=6.1 sequence, and the delay times between two sequences show a little difference. ④ The spatial variation in S wave splitting polarization direction may be due to the stress disturbance imposed by the M=6.2 and the M=6.1 mainshocks on regional background stress field.
基金financial support from the National Natural Science Foundation of China (U1862111 and 21702213)Cheung Kong Scholars Programme of China+3 种基金Chinese Academic of Science “light of west China” ProgramProvincial International Cooperation Project 2020YFH0118, Sichuan, ChinaOpen Fund (PLN201802 and 201928) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)Open Fund of State Key Laboratory of Industrial Vent Gas Reuse (SKLIVGR-SWPU-2020-05)。
文摘Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
文摘The shear wave splitting study is based on data of the 3 component digital seismograms. This was recorded at 3 sets of stations, which were set up after the Yaoan M S6 5 earthquake, near its epicenter. The results indicate the following:①Shear wave splitting has been observed through analyzing 236 aftershock recordings within the shear wave window. ②The time delay was mostly in the range of 3 5~10 5ms/km and the average was 7 0ms/km.③The polarization direction of the fast split S wave was mostly in the range of N140°E~N164°E and the average was N152 4°E. ④The preferred polarization direction for the fast shear wave was different from the direction of the seismogenic structure of the mainshock (Maweijing fault) and the direction of the rupture of the aftershocks, but similar to the principal compressional axis of the regional stress field. ⑤Shear wave splitting for sequence of the aftershocks of the Yaoan earthquake was the result of anisotropy of EDA cracks controlled by stress field.
基金the University-Industry Collaborative Education Program of the Ministry of Education of China(grant no.201801301030).
文摘Background:Unfavorable fractures are among the most common complications of bilateral sagittal split ramus osteotomy(BSSRO).This study aimed to evaluate unfavorable fracture patterns during BSSRO and assess the related risk factors and treatment measures.Methods:The clinical records and radiographs of 679 patients(1358 sides)who underwent BSSRO at Shanghai Ninth People’s Hospital between September 2013 and December 2021 were examined.Results:Patients with unfavorable fractures who underwent surgical restoration were studied.The incidence of unfavorable fractures was 0.8%(n¼11),with the highest rate in the third year.The unfavorable fractures were divided into three types by location and clinical treatment:(1)SSRO could still be completed after buccal/lingual plate unfavorable fracture(0.6%,n=8);(2)condylar/coronoid process fractures/intermaxillary fixation needed(0.1%,n=2);(3)additional osteotomy required(0.07%,n=1).Conclusion:These results suggest that as a surgeon’s experience increases,the rate of unfavorable fractures may decrease.The novel classification of unfavorable fractures for SSRO might be useful for surgeons to make appropriate treatment choices during orthognathic surgery.