In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ...In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.展开更多
One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of p...One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.展开更多
Citric acid(CA)and chitosan(CS)were employed to modify magnesium oxychloride cement(MOC).Multiscale measurements were implemented to study the properties of the modified MOC pastes.Results show that the addition of CA...Citric acid(CA)and chitosan(CS)were employed to modify magnesium oxychloride cement(MOC).Multiscale measurements were implemented to study the properties of the modified MOC pastes.Results show that the addition of CA/CS significantly changes the content of each phase and the microstructure of phase 5.The single addition of CA can effectively increase the compressive strength of MOC after 7 d curing,while CS exerts no obvious effect on the compressive strength.As to the simultaneous addition of CA and CS,the compressive strength of MOC gradually decreases with the increasing content of CS.Interestingly,mixing CA and CS significantly enhances the water resistance of MOC and decreases the degradation rate of MOC in phosphate buffered solution,which can be ascribed to the low specific surface area of the plate-like crystals in the modified MOC and the reduction of pores in the structure.展开更多
This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF...This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.展开更多
The general objective of the work is to compare the effect of the addition of synthetic citric acid compared to the addition of natural fruit juice of Citrus aurantiifolia on the conservation of drink based on red cha...The general objective of the work is to compare the effect of the addition of synthetic citric acid compared to the addition of natural fruit juice of Citrus aurantiifolia on the conservation of drink based on red chalice H. sabdariffa. The tests were carried out over a period of 5 weeks at 4°C and 37°C with seven batches of beverage samples prepared at the rate of a calyx/water ratio of 1/40 (kg·kg<sup>-1</sup>) and added respectively citric acid at 1, 2 and 4 g·L<sup>-1</sup> and lemon juice at 10, 20 and 40 mL·L<sup>-1</sup>. The characterization of the different batches of beverages was carried out from day one. A follow-up of the residual anthocyanin content and the intensity of the red coloring were carried out over five weeks. The anthocyanin concentration was determined by the pH-differential method. The red color degradation index is determined based on the CIELAB color system (L*, a*, b* and L*). R and Minitab 18 software was used for data processing. The results of the monitoring of the parameters showed that the concentration of 1 g AC L<sup>-1</sup> retains 2.7 mg more of the anthocyanins than adding 10 mL JC L<sup>-1</sup> and longer maintains red color when stored at 4°C and 37°C/5 weeks. The 2 g AC L<sup>-1</sup> and 4 g AC L<sup>-1</sup> ratios have the same effects as the addition of 20 and 40 mL of lemon juice, all accelerating the degradation of anthocyanins and the red color. After 5 weeks of storage at 37°C, the effect of the temperature combined with the increase in the acidity of the samples (2 to 4 g AC L<sup>-1</sup> and 20 to 40 ml JC L<sup>-1</sup>), have accelerated the total disappearance of the red color on all samples.展开更多
AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identi...AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identification and quantification of ATCA in biological samples, where the sample extraction and clean up were achieved by solid phase extraction(SPE). After optimization of SPE procedures, ATCA was analyzed by high performance liquid chromatographytandem mass spectrometry. ATCA levels following the administration of different doses of potassium cyanide(KCN) to mice were measured and compared to endogenous ATCA levels in order to study the significance of using ATCA as a biomarker for cyanide poisoning.RESULTS: A custom made analytical method was established for a new(mice) model when animals were exposed to increasing KCN doses. The application of this method provided important new information on ATCA as a potential cyanide biomarker. ATCA concentration in mice plasma samples were increased from 189 ± 28 ng/mL(n = 3) to 413 ± 66 ng/mL(n = 3) following a 10 mg/kg body weight dose of KCN introduced subcutaneously. The sensitivity of this analytical method proved to be a tool for measuring endogenous level of ATCA in mice organs as follows: 1.2 ± 0.1 μg/g for kidney samples, 1.6 ± 0.1 μg/g for brain samples, 1.8 ± 0.2 μg/g for lung samples, 2.9 ± 0.1 μg/g for heart samples, and 3.6 ± 0.9 μg/g for liver samples. CONCLUSION: This finding suggests that ATCA has the potential to serve as a plasma biomarker / forensic biomarker for cyanide poisoning.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid co...The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid concentration,leaching temperature,time and liquid-to-solid ratio were studied.The kinetics analysis of titanium leaching from red mud was deeply investigated.The results show that the citric acid could increase the recovery of titanium and decrease the consumption of sulfuric acid.The recovery of titanium was increased from 65% to 82% and the consumption of sulfuric acid was decreased by about 30% with using 5% citric acid.The dissolution of perovskite,brookite,and hematite in red mud could easily be dissolved using citric acid.The acid leaching process was controlled by internal diffusion of shrinking core model(SCM) and the correlation coefficient was above 0.98.The apparent rate constant was increased from 0.0012 to 0.0019 with 5% citric acid at 90 °C.The apparent activation energy of titanium leaching decreased from 39.77 k J/mol to 34.61 k J/mol with 5% citric acid.展开更多
The accumulation of citric acid and associated correlative strain indexes were investigated in the seedlings of Puccinellia tenuiflora (Griseb.) Scribn. et Merr. stressed with 0-175 mmol/L Na 2CO 3. The results ...The accumulation of citric acid and associated correlative strain indexes were investigated in the seedlings of Puccinellia tenuiflora (Griseb.) Scribn. et Merr. stressed with 0-175 mmol/L Na 2CO 3. The results showed that the citric acid accumulation is a specific physiological respond of this plant to alkali_stress. On the contrary, the citric acid content decreased slightly in this plant stressed with 0-400 mmol/L neutral salt NaCl. The accumulation of citric acid increased with increasing strength of alkali_stress, the citric acid content increased gently when the strength was lower than 100 mmol/L Na 2CO 3, but increased obviously when the strength was higher than 100 mmol/L Na 2CO 3. The citric acid rapidly accumulated at early alkali_stress, an obvious raise can be mensurated after 4 h. About 48 h after treatment, the amount of citric acid accumulated nearly reached the maximum. In various parts of P. tenuiflora seedlings alkali_stressed for 144 h, the order of citric acid content from high to low is: old leaf, mature leaf, old leaf sheath, young leaf sheath, young stem, old stem, and young leaf. In the mature leaf, the citric acid content gradually increased with increasing strength of alkali_stress, while the citric acid content increased sharply in old leaf and sheath just for strength higher than 125 mmol/L. There was little change of citric acid content in stem, but no change in young leaf. The results of the experiment showed that citric acid was outstanding among accumulated organic acid caused by alkali_stress. The contribution of other organic acids was negligible.展开更多
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of...Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.展开更多
Leaching of an oxidized copper ore containing malachite, as a new approach, was investigated by an organic reagent, citric acid. Sulfuric acid is the most common reagent in the leaching of oxide copper ores, but it ha...Leaching of an oxidized copper ore containing malachite, as a new approach, was investigated by an organic reagent, citric acid. Sulfuric acid is the most common reagent in the leaching of oxide copper ores, but it has several side effects such as severe adverse impact on the environment. In this investigation, the effects of particle size, acid concentration, leaching time, solid/liquid ratio, temperature, and stirring speed were optimized. According to the experimental results, malachite leaching by citric acid was technically feasible. Optimum leaching conditions were found as follows: the range of particle size, 105-150 μm; acid concentration, 0.2 M; leaching time, 30 min; solid/liquid ratio, 1:20 g/mL; temperature, 40℃; and stirring speed, 200 r/min. Under the optimum conditions, 91.61% of copper was extracted.展开更多
In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical ...In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical properties of TDMOC was studied. The hydration heat release at initial 24 h and strengths at 3, 7, and 28 days of TDMOC specimens were conducted. The hydration products and paste microstructure were analyzed by XRD, FT-IR and SEM, respectively. The results showed that citric acid can not only reduce the 24 h hydration heat release and delay the occurring time of second peak of TDMOC, but also produce more 5Mg(OH)z.MgC12.SH20 and less Mg(OH)2 in hydration process of TDMOC. More perfect and slender crystals were observed in the microstructure of the TDMOC pastes with citric acid. The results demonstrated that citric acid as an additive of TDMOC can decrease the hydration heat release and increase the compressive strength and flexural strength of TDMOC. The possible mechanism for the strength enhancement was discussed.展开更多
In order to improve the corrosion resistance of AZ91D magnesium alloy,a coating was formed by a potentiostatic technique from a solutions containing Ce(NO_(3))_(3),Na_(2)MoO_(4)and citric acid(H_(3)Cit).The degree of ...In order to improve the corrosion resistance of AZ91D magnesium alloy,a coating was formed by a potentiostatic technique from a solutions containing Ce(NO_(3))_(3),Na_(2)MoO_(4)and citric acid(H_(3)Cit).The degree of corrosion protection achieved was evaluated in simulated physiological solution by monitoring the open circuit potential,polarization techniques and electrochemical impedance spectroscopy(EIS).Surface analysis techniques(SEM,EDS,X-ray diffraction and X-ray photoelectron spectroscopy(XPS))were used for coating characterization.The film is mainly composed by cerium and molybdenum oxides and magnesium oxides and hydroxides.The obtained results show that the corrosion resistance of the coated electrodes has been increased significantly.This improvement in the anticorrosive performance is in part due to the corrosion inhibition properties of H_(3)Cit.展开更多
The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. T...The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).展开更多
Objective: To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute ...Objective: To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Methods: Rats were received intraperitoneal(i.p.) injection of malathion 150 mg/kg along with citric acid(200 or 400 mg/kg, orally), atropine(1 mg/kg, i.p.) or citric acid 200 mg/kg+atropine 1 mg/kg and euthanized 4 h later. Results: Malathion resulted in increased lipid peroxidation(malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase(GPx) activity, total antioxidant capacity(TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase(ACh E) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The Comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase(i NOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain ACh E increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and i NOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, ACh E and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and i NOS expression in brain and liver. Conclusions: The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure.展开更多
[ Objective] To investigate the effects of Newcastle disease vaccination and lead exposure on growth and development of egg yellow feather quail. [ Method] Ninety 14-day-old quails were assigned randomly to 10 groups ...[ Objective] To investigate the effects of Newcastle disease vaccination and lead exposure on growth and development of egg yellow feather quail. [ Method] Ninety 14-day-old quails were assigned randomly to 10 groups ( n = 9), and they fed and drunk at liberty. A 2 ×5 factorial design was used. The quail immunized with ND vaccine and those non-immunized were exposed to lead at a dosage of 0, 50,500, 1 000 and 2 000 mg/L, respectively. [Result] The ND immunization reduced body weight significantly ( P 〈 0.01 ) and increased liver index and serum levels of hy- aluronic acid in quail within 1 -2 weeks post inoculation. The quail exposed to 2 000 mg/L lead acetate had significantly lower body weight than the control ( P 〈 0.01 ). From 7 weeks old, the same inhibitory effect was observed in the quail'exposed to lead at different dosages ( P 〈 0.01 ). In addition, the lead poisoning could cause decreased feed intake, depilation, gonadal dysgenesis, and increased serum levels of hyaluronic acid. [ Conduslon] The inhibitory effect of ND vaccination on growth of quail occurs within 1 -2 weeks post inoculation; thus, the effects of immune stress should not be worried in quail production. The lead poisoning has significant effects on body weight and feed intake of quail, and lead dosage and duration affect the inhibitory effects of lead. Gonadal dysgenesis is an important indicator of lead poisoning in. quail. The serum levels of hyaluronic acid can be used to determine whether the quail have been immunized with ND vaccine or have contacted lead pollutants.展开更多
Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 8...Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 84.5% cobalt is extracted from a laterite ore containing 0.13% Co when leached at ambient temperature for 2 h with 30 g/L citric acid and 10 g/L ammonium bifluoride.Pyrolusite is reduced by citric acid during leaching,cobalt intergrown with which is liberated and subsequently chelated by the citric acid.The extraction of cobalt is enhanced in the presence of ammonium bifluoride because the matrix of silicate minerals is destroyed by ammonium bifluoride and the adsorbed cobalt is subsequently liberated.展开更多
To explore the influence of water stress on fruit quality and gene expression related to citrate metabolism of ponkan. The test were conducted from May 15 to December 24 in 2013 using six-year-old ponkan (C. blanco cv...To explore the influence of water stress on fruit quality and gene expression related to citrate metabolism of ponkan. The test were conducted from May 15 to December 24 in 2013 using six-year-old ponkan (C. blanco cv. Ponkan) trees with 40% soil water conditions by taken regular watering as control. The content of acids in fruit were determined by HPLC, and relative expression of related genes of citric acid metabolic were determined by relative fluorescence quantitative PCR. The results showed that the content of citric acid, malic acid, quinic acid and total organic acids per gram sarcocarp were extremely increased by 285.2%, 320%, 480% and 299.1%, and the content of per-fruit organic acid were 77.39%, 89.64%, 117.24% and 75.9% respectively compared to those control in the fruit mature stage. Relative expression of CitCS1, CitCS2 were higher than control, and relative expression of CitAco1, CitAco2, CitAco3 had a certain increase in the late fruit development, were lower in mature stage. Three relative expression of CitIDH gene were higher than control in mature stage. Low CitGAD4 relative expression and undetectable in mature stage, the relative expression of CitGAD5 gene had a role in promoting under water stress. Furthermore, the relative expression of CitCS1, CitCS2, CitACO1, CitACO3, CitIDH1, CitIDH2, CitIDH3, CitGAD4 and CitGAD5 were influenced by water stress through the correlation analysis. Water stress caused the accumulation of citric acid, declined fruit quality, leaded to change of the genetic rela- tive expression about citric acid synthesis and degradation. The down-regulation of CitACO1, CitGAD4 and up-regulation of CitCS1, CitCS2 might be one of the reasons that promoted to the accumulation of citric acid.展开更多
Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REE...Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.展开更多
Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffractio...Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffraction, nitrogen adsorption-desorption isotherm study, transmission electron microscopy (TEM), thermal gravimetric and differential thermal analysis, and Fourier transform infrared (FTIR) analysis . The as-synthesized samples prepared at pH 4.5 showed lamellar mesostruroned form with high crystallinity. Results showed that the pore size and pore volume changed when the materials were prepared under different pH conditions. Morphology of the samples was observed by using TEM, which showed that the samples possessed relatively small particles closely packed together. The as-synthesized samples were investigated using FTIR, and the mesopore formation mechanism was discussed.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province(ZR2020ME011).
文摘In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.
基金National Research Foundation of Korea(NRF),Grant/Award Number:2021R1A2C2012685Korea Institute of Energy Technology Evaluation and Planning(KETEP),Grant/Award Number:20203020030010Ministry of Trade,Industry&Energy(MOTIE,Korea),Grant/Award Number:20020400。
文摘One of the primary challenges in relation to phosphoric acid fuel cells is catalyst poisoning by phosphate anions that occurs at the interface between metal nanoparticles and the electrolyte.The strong adsorption of phosphate anions on the catalyst surface limits the active sites for the oxygen reduction reaction(ORR),significantly deteriorating fuel cell performance.Here,antipoisoning catalysts consisting of Pt-based nanoparticles encapsulated in an ultrathin carbon shell that can be used as a molecular sieve layer are rationally designed.The pore structure of the carbon shells is systematically regulated at the atomic level by high-temperature gas treatment,allowing O_(2) molecules to selectively react on the active sites of the metal nanoparticles through the molecular sieves.Besides,the carbon shell,as a protective layer,effectively prevents metal dissolution from the catalyst during a long-term operation.Consequently,the defect-controlled carbon shell leads to outstanding ORR activity and durability of the hybrid catalyst even in phosphoric acid electrolytes.
基金Funded by the National Natural Science Foundation of China(No.52071130)the Natural Science Foundation of Jiangsu Province(No.BK20211204)the Project of Outstanding Leading Talents in Gansu Province。
文摘Citric acid(CA)and chitosan(CS)were employed to modify magnesium oxychloride cement(MOC).Multiscale measurements were implemented to study the properties of the modified MOC pastes.Results show that the addition of CA/CS significantly changes the content of each phase and the microstructure of phase 5.The single addition of CA can effectively increase the compressive strength of MOC after 7 d curing,while CS exerts no obvious effect on the compressive strength.As to the simultaneous addition of CA and CS,the compressive strength of MOC gradually decreases with the increasing content of CS.Interestingly,mixing CA and CS significantly enhances the water resistance of MOC and decreases the degradation rate of MOC in phosphate buffered solution,which can be ascribed to the low specific surface area of the plate-like crystals in the modified MOC and the reduction of pores in the structure.
基金financed under the scheme of Laboratory of Excellence ARBRE by the French Agence Nationale de la Recherche(ANR).
文摘This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.
文摘The general objective of the work is to compare the effect of the addition of synthetic citric acid compared to the addition of natural fruit juice of Citrus aurantiifolia on the conservation of drink based on red chalice H. sabdariffa. The tests were carried out over a period of 5 weeks at 4°C and 37°C with seven batches of beverage samples prepared at the rate of a calyx/water ratio of 1/40 (kg·kg<sup>-1</sup>) and added respectively citric acid at 1, 2 and 4 g·L<sup>-1</sup> and lemon juice at 10, 20 and 40 mL·L<sup>-1</sup>. The characterization of the different batches of beverages was carried out from day one. A follow-up of the residual anthocyanin content and the intensity of the red coloring were carried out over five weeks. The anthocyanin concentration was determined by the pH-differential method. The red color degradation index is determined based on the CIELAB color system (L*, a*, b* and L*). R and Minitab 18 software was used for data processing. The results of the monitoring of the parameters showed that the concentration of 1 g AC L<sup>-1</sup> retains 2.7 mg more of the anthocyanins than adding 10 mL JC L<sup>-1</sup> and longer maintains red color when stored at 4°C and 37°C/5 weeks. The 2 g AC L<sup>-1</sup> and 4 g AC L<sup>-1</sup> ratios have the same effects as the addition of 20 and 40 mL of lemon juice, all accelerating the degradation of anthocyanins and the red color. After 5 weeks of storage at 37°C, the effect of the temperature combined with the increase in the acidity of the samples (2 to 4 g AC L<sup>-1</sup> and 20 to 40 ml JC L<sup>-1</sup>), have accelerated the total disappearance of the red color on all samples.
基金Supported by NIH:NIAID/USAMRICD Interagency Agreements(W911NF-07-D-0001)the USAMRICD under the auspices of the US Army Research Office Scientific Services Program administered by Battelle(Delivery order 0557,Contract No TCN 08284)the Robert A.Welch Foundation at Sam Houston State University,Huntsville,TX,United States
文摘AIM: To demonstrate the potential of using 2-aminothiazoline-4-carboxylic acid(ATCA) as a novel biomarker/forensic biomarker for cyanide poisoning. METHODS: A sensitive method was developed and employed for the identification and quantification of ATCA in biological samples, where the sample extraction and clean up were achieved by solid phase extraction(SPE). After optimization of SPE procedures, ATCA was analyzed by high performance liquid chromatographytandem mass spectrometry. ATCA levels following the administration of different doses of potassium cyanide(KCN) to mice were measured and compared to endogenous ATCA levels in order to study the significance of using ATCA as a biomarker for cyanide poisoning.RESULTS: A custom made analytical method was established for a new(mice) model when animals were exposed to increasing KCN doses. The application of this method provided important new information on ATCA as a potential cyanide biomarker. ATCA concentration in mice plasma samples were increased from 189 ± 28 ng/mL(n = 3) to 413 ± 66 ng/mL(n = 3) following a 10 mg/kg body weight dose of KCN introduced subcutaneously. The sensitivity of this analytical method proved to be a tool for measuring endogenous level of ATCA in mice organs as follows: 1.2 ± 0.1 μg/g for kidney samples, 1.6 ± 0.1 μg/g for brain samples, 1.8 ± 0.2 μg/g for lung samples, 2.9 ± 0.1 μg/g for heart samples, and 3.6 ± 0.9 μg/g for liver samples. CONCLUSION: This finding suggests that ATCA has the potential to serve as a plasma biomarker / forensic biomarker for cyanide poisoning.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金Project(B2014-012)supported by the Doctoral Foundation from Henan Polytechnic University,China
文摘The recovery of titanium with citric acid in sulfuric acid from red mud was put forward to strengthen acid leaching efficiency.The main factors on the recovery of titanium such as citric acid addition,sulfuric acid concentration,leaching temperature,time and liquid-to-solid ratio were studied.The kinetics analysis of titanium leaching from red mud was deeply investigated.The results show that the citric acid could increase the recovery of titanium and decrease the consumption of sulfuric acid.The recovery of titanium was increased from 65% to 82% and the consumption of sulfuric acid was decreased by about 30% with using 5% citric acid.The dissolution of perovskite,brookite,and hematite in red mud could easily be dissolved using citric acid.The acid leaching process was controlled by internal diffusion of shrinking core model(SCM) and the correlation coefficient was above 0.98.The apparent rate constant was increased from 0.0012 to 0.0019 with 5% citric acid at 90 °C.The apparent activation energy of titanium leaching decreased from 39.77 k J/mol to 34.61 k J/mol with 5% citric acid.
文摘The accumulation of citric acid and associated correlative strain indexes were investigated in the seedlings of Puccinellia tenuiflora (Griseb.) Scribn. et Merr. stressed with 0-175 mmol/L Na 2CO 3. The results showed that the citric acid accumulation is a specific physiological respond of this plant to alkali_stress. On the contrary, the citric acid content decreased slightly in this plant stressed with 0-400 mmol/L neutral salt NaCl. The accumulation of citric acid increased with increasing strength of alkali_stress, the citric acid content increased gently when the strength was lower than 100 mmol/L Na 2CO 3, but increased obviously when the strength was higher than 100 mmol/L Na 2CO 3. The citric acid rapidly accumulated at early alkali_stress, an obvious raise can be mensurated after 4 h. About 48 h after treatment, the amount of citric acid accumulated nearly reached the maximum. In various parts of P. tenuiflora seedlings alkali_stressed for 144 h, the order of citric acid content from high to low is: old leaf, mature leaf, old leaf sheath, young leaf sheath, young stem, old stem, and young leaf. In the mature leaf, the citric acid content gradually increased with increasing strength of alkali_stress, while the citric acid content increased sharply in old leaf and sheath just for strength higher than 125 mmol/L. There was little change of citric acid content in stem, but no change in young leaf. The results of the experiment showed that citric acid was outstanding among accumulated organic acid caused by alkali_stress. The contribution of other organic acids was negligible.
基金Project supported by University New Materials Disciplines Construction Program of Beijing Region
文摘Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.
文摘Leaching of an oxidized copper ore containing malachite, as a new approach, was investigated by an organic reagent, citric acid. Sulfuric acid is the most common reagent in the leaching of oxide copper ores, but it has several side effects such as severe adverse impact on the environment. In this investigation, the effects of particle size, acid concentration, leaching time, solid/liquid ratio, temperature, and stirring speed were optimized. According to the experimental results, malachite leaching by citric acid was technically feasible. Optimum leaching conditions were found as follows: the range of particle size, 105-150 μm; acid concentration, 0.2 M; leaching time, 30 min; solid/liquid ratio, 1:20 g/mL; temperature, 40℃; and stirring speed, 200 r/min. Under the optimum conditions, 91.61% of copper was extracted.
基金Funded by One-Hundred Talent Project of CAS(No.B0210)the Qinghai Province Science and Technology Tackling Key Project(No.2008-G-158)
文摘In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical properties of TDMOC was studied. The hydration heat release at initial 24 h and strengths at 3, 7, and 28 days of TDMOC specimens were conducted. The hydration products and paste microstructure were analyzed by XRD, FT-IR and SEM, respectively. The results showed that citric acid can not only reduce the 24 h hydration heat release and delay the occurring time of second peak of TDMOC, but also produce more 5Mg(OH)z.MgC12.SH20 and less Mg(OH)2 in hydration process of TDMOC. More perfect and slender crystals were observed in the microstructure of the TDMOC pastes with citric acid. The results demonstrated that citric acid as an additive of TDMOC can decrease the hydration heat release and increase the compressive strength and flexural strength of TDMOC. The possible mechanism for the strength enhancement was discussed.
基金CONICET(PIP-112-201101-00055)ANPCYT(PICT-2015-0726)Universidad Nacional del Sur(PGI 24/M127),Bahía Blanca,Argentina。
文摘In order to improve the corrosion resistance of AZ91D magnesium alloy,a coating was formed by a potentiostatic technique from a solutions containing Ce(NO_(3))_(3),Na_(2)MoO_(4)and citric acid(H_(3)Cit).The degree of corrosion protection achieved was evaluated in simulated physiological solution by monitoring the open circuit potential,polarization techniques and electrochemical impedance spectroscopy(EIS).Surface analysis techniques(SEM,EDS,X-ray diffraction and X-ray photoelectron spectroscopy(XPS))were used for coating characterization.The film is mainly composed by cerium and molybdenum oxides and magnesium oxides and hydroxides.The obtained results show that the corrosion resistance of the coated electrodes has been increased significantly.This improvement in the anticorrosive performance is in part due to the corrosion inhibition properties of H_(3)Cit.
基金Sponsored by a Girant-in-Aid from the Ministry of Education of China.
文摘The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).
文摘Objective: To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Methods: Rats were received intraperitoneal(i.p.) injection of malathion 150 mg/kg along with citric acid(200 or 400 mg/kg, orally), atropine(1 mg/kg, i.p.) or citric acid 200 mg/kg+atropine 1 mg/kg and euthanized 4 h later. Results: Malathion resulted in increased lipid peroxidation(malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase(GPx) activity, total antioxidant capacity(TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase(ACh E) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The Comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase(i NOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain ACh E increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and i NOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, ACh E and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and i NOS expression in brain and liver. Conclusions: The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure.
基金funded by the Key Scientific and Technological Project of Henan Province ( 082102130002)
文摘[ Objective] To investigate the effects of Newcastle disease vaccination and lead exposure on growth and development of egg yellow feather quail. [ Method] Ninety 14-day-old quails were assigned randomly to 10 groups ( n = 9), and they fed and drunk at liberty. A 2 ×5 factorial design was used. The quail immunized with ND vaccine and those non-immunized were exposed to lead at a dosage of 0, 50,500, 1 000 and 2 000 mg/L, respectively. [Result] The ND immunization reduced body weight significantly ( P 〈 0.01 ) and increased liver index and serum levels of hy- aluronic acid in quail within 1 -2 weeks post inoculation. The quail exposed to 2 000 mg/L lead acetate had significantly lower body weight than the control ( P 〈 0.01 ). From 7 weeks old, the same inhibitory effect was observed in the quail'exposed to lead at different dosages ( P 〈 0.01 ). In addition, the lead poisoning could cause decreased feed intake, depilation, gonadal dysgenesis, and increased serum levels of hyaluronic acid. [ Conduslon] The inhibitory effect of ND vaccination on growth of quail occurs within 1 -2 weeks post inoculation; thus, the effects of immune stress should not be worried in quail production. The lead poisoning has significant effects on body weight and feed intake of quail, and lead dosage and duration affect the inhibitory effects of lead. Gonadal dysgenesis is an important indicator of lead poisoning in. quail. The serum levels of hyaluronic acid can be used to determine whether the quail have been immunized with ND vaccine or have contacted lead pollutants.
基金Project(50725416) supported by the National Natural Science Foundation of China for Distinguished Young Scholars
文摘Citric acid was used to selectively extract cobalt from limonite-type laterite ores in the presence of ammonium bifluoride.The results show that ammonium bifluoride enhances the leaching of cobalt by citric acid,and 84.5% cobalt is extracted from a laterite ore containing 0.13% Co when leached at ambient temperature for 2 h with 30 g/L citric acid and 10 g/L ammonium bifluoride.Pyrolusite is reduced by citric acid during leaching,cobalt intergrown with which is liberated and subsequently chelated by the citric acid.The extraction of cobalt is enhanced in the presence of ammonium bifluoride because the matrix of silicate minerals is destroyed by ammonium bifluoride and the adsorbed cobalt is subsequently liberated.
文摘To explore the influence of water stress on fruit quality and gene expression related to citrate metabolism of ponkan. The test were conducted from May 15 to December 24 in 2013 using six-year-old ponkan (C. blanco cv. Ponkan) trees with 40% soil water conditions by taken regular watering as control. The content of acids in fruit were determined by HPLC, and relative expression of related genes of citric acid metabolic were determined by relative fluorescence quantitative PCR. The results showed that the content of citric acid, malic acid, quinic acid and total organic acids per gram sarcocarp were extremely increased by 285.2%, 320%, 480% and 299.1%, and the content of per-fruit organic acid were 77.39%, 89.64%, 117.24% and 75.9% respectively compared to those control in the fruit mature stage. Relative expression of CitCS1, CitCS2 were higher than control, and relative expression of CitAco1, CitAco2, CitAco3 had a certain increase in the late fruit development, were lower in mature stage. Three relative expression of CitIDH gene were higher than control in mature stage. Low CitGAD4 relative expression and undetectable in mature stage, the relative expression of CitGAD5 gene had a role in promoting under water stress. Furthermore, the relative expression of CitCS1, CitCS2, CitACO1, CitACO3, CitIDH1, CitIDH2, CitIDH3, CitGAD4 and CitGAD5 were influenced by water stress through the correlation analysis. Water stress caused the accumulation of citric acid, declined fruit quality, leaded to change of the genetic rela- tive expression about citric acid synthesis and degradation. The down-regulation of CitACO1, CitGAD4 and up-regulation of CitCS1, CitCS2 might be one of the reasons that promoted to the accumulation of citric acid.
文摘Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.
基金Project supported by the Japanese Government Ministry of Education, Culture, Sports, Science and Technology (Monbuka-gakusho Scholarship)
文摘Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffraction, nitrogen adsorption-desorption isotherm study, transmission electron microscopy (TEM), thermal gravimetric and differential thermal analysis, and Fourier transform infrared (FTIR) analysis . The as-synthesized samples prepared at pH 4.5 showed lamellar mesostruroned form with high crystallinity. Results showed that the pore size and pore volume changed when the materials were prepared under different pH conditions. Morphology of the samples was observed by using TEM, which showed that the samples possessed relatively small particles closely packed together. The as-synthesized samples were investigated using FTIR, and the mesopore formation mechanism was discussed.