A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution con...A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution containing citric acid drop by drop at 50 °C.The resulting products were characterized by scanning electron microscopy and X-ray diffraction.It was found that the particles consisted of numerous silver microwires.The reaction temperature greatly affected the morphologies of the as-prepared particles.Both of the mean length and width of the silver microwires increased with the decrease of the concentration of silver nitrate.And the lower concentration was unfavorable for the formation of more silver microwires.Similar findings were also observed when the concentration of iron(Ⅱ) sulfate was decreased.The amount of citric acid also greatly affected the shape of the as-prepared particles.It was concluded that citric acid was the key role in the formation of silver microwires via the Oswald ripening mechanism.展开更多
A novel wet-chemical method for the preparation of silver flakes was studied. The well-defined particles were prepared by directly adding FeSO4 solution into AgNO3 solution containing citric acid at an agitation speed...A novel wet-chemical method for the preparation of silver flakes was studied. The well-defined particles were prepared by directly adding FeSO4 solution into AgNO3 solution containing citric acid at an agitation speed of 150 r/min at room temperature. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that particles are irregular thin silver flakes. And the sizes of them range from 2 to 10 μm. It is found that citric acid plays an important role in the formation of sliver flakes. There is an optimum amount of citric acid for the preparation of silver flakes by this method. It is also found that high reduction rate is favorable for the formation of silver flakes.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
We presented a strategy to prepare spherical tungsten powder by the combination of hydrothermal method and H2reduction process.In hydrothermal process,the micelle of tetraethylammonium bromide(TEAB)act as spherical te...We presented a strategy to prepare spherical tungsten powder by the combination of hydrothermal method and H2reduction process.In hydrothermal process,the micelle of tetraethylammonium bromide(TEAB)act as spherical templates for the deposition of tungsten oxide,whereas the excessive TEAB inhibit the formation of spherical tungsten oxide due to the dense molecular layer of TEAB on the tungsten oxide particles.Citric acid(CA)can control the formation rate and structure of the tungsten oxide when its concentration is more than 0.2 mol/L,because of its ability to coordinate with tungsten atoms.The synergistic effect of TEAB and CA facilitates the formation of spherical tungsten oxide with nanorod crown.After being treated by H_(2)at 600 and 650℃,the tungsten oxide particles are reduced to tungsten particles,which maintain the spherical structure of tungsten oxide and have porous structure.展开更多
To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid...To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid,polyethylene glycol and cetyltrimethylammonium bromide) based on the most suitable method above.The cracking reaction of methylcyclohexane under supercritical conditions was performed as the probe reaction to estimate the catalytic performance,and the properties of Ni-Mo/SiO_(2) catalyst were characterized by N_(2) absorption-desorption,XRD,XPS,H_(2)-TPR,NH_(3)-TPD,in-situ IR of NH_(3) desorption,HRTEM and STEM-mapping so as to study the structure-activity relationship.The catalyst synthesized via sol-gel method showed the best conversion and heat sink,being 81.8% and 3.81 MJ/kg,which was closely related to strong mutual effect between active components and SiO_(2) as well as strong acid sites.Besides,the introduction of additives by sol-gel method has an affirmative influence on properties of Ni-Mo/SiO_(2) catalysts,being that the acidity(more L and B acid sites) was modulated and organic groups interact with metal to suppress the aggregation of metal species(Ni and Mo),thereby enhancing the catalytic activity.At 750℃,the conversion(89.3%) as well as heat sink(3.99 MJ/kg) of MCH cracking obtained an optimum over Ni-Mo/SiO_(2) catalyst with addition of citric acid.展开更多
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalli...s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.展开更多
LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the g...LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.展开更多
基金Project (2011CDC114) supported by the Hubei Provincial Natural Science Foundation of China
文摘A novel and facile wet-chemical method for synthesis of silver microwires was developed.The well-defined particles were prepared by adding an iron(Ⅱ) sulfate heptahydrate solution into a silver nitrate solution containing citric acid drop by drop at 50 °C.The resulting products were characterized by scanning electron microscopy and X-ray diffraction.It was found that the particles consisted of numerous silver microwires.The reaction temperature greatly affected the morphologies of the as-prepared particles.Both of the mean length and width of the silver microwires increased with the decrease of the concentration of silver nitrate.And the lower concentration was unfavorable for the formation of more silver microwires.Similar findings were also observed when the concentration of iron(Ⅱ) sulfate was decreased.The amount of citric acid also greatly affected the shape of the as-prepared particles.It was concluded that citric acid was the key role in the formation of silver microwires via the Oswald ripening mechanism.
基金Project(B20121806)supported by the Science and Technology Research Program of Education Department of Hubei Province,China
文摘A novel wet-chemical method for the preparation of silver flakes was studied. The well-defined particles were prepared by directly adding FeSO4 solution into AgNO3 solution containing citric acid at an agitation speed of 150 r/min at room temperature. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that particles are irregular thin silver flakes. And the sizes of them range from 2 to 10 μm. It is found that citric acid plays an important role in the formation of sliver flakes. There is an optimum amount of citric acid for the preparation of silver flakes by this method. It is also found that high reduction rate is favorable for the formation of silver flakes.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).
基金Funded by the Key Program of Jiangxi Province on Development and Research(No.20203BBE53058)the Key Program of Ganzhou City on Development and Research(No.202101125003)。
文摘We presented a strategy to prepare spherical tungsten powder by the combination of hydrothermal method and H2reduction process.In hydrothermal process,the micelle of tetraethylammonium bromide(TEAB)act as spherical templates for the deposition of tungsten oxide,whereas the excessive TEAB inhibit the formation of spherical tungsten oxide due to the dense molecular layer of TEAB on the tungsten oxide particles.Citric acid(CA)can control the formation rate and structure of the tungsten oxide when its concentration is more than 0.2 mol/L,because of its ability to coordinate with tungsten atoms.The synergistic effect of TEAB and CA facilitates the formation of spherical tungsten oxide with nanorod crown.After being treated by H_(2)at 600 and 650℃,the tungsten oxide particles are reduced to tungsten particles,which maintain the spherical structure of tungsten oxide and have porous structure.
基金supported by National Natural Science Foundation of China [grant number 91841301]Fundamental Research Funds for the Central Universities [grant number YJ201791]。
文摘To improve the cracking behavior of hydrocarbon,Ni-Mo/SiO_(2) bimetallic catalysts were synthesized by different preparation methods(sol-gel,co-impregnation and single-impregnation) and added the additives(citric acid,polyethylene glycol and cetyltrimethylammonium bromide) based on the most suitable method above.The cracking reaction of methylcyclohexane under supercritical conditions was performed as the probe reaction to estimate the catalytic performance,and the properties of Ni-Mo/SiO_(2) catalyst were characterized by N_(2) absorption-desorption,XRD,XPS,H_(2)-TPR,NH_(3)-TPD,in-situ IR of NH_(3) desorption,HRTEM and STEM-mapping so as to study the structure-activity relationship.The catalyst synthesized via sol-gel method showed the best conversion and heat sink,being 81.8% and 3.81 MJ/kg,which was closely related to strong mutual effect between active components and SiO_(2) as well as strong acid sites.Besides,the introduction of additives by sol-gel method has an affirmative influence on properties of Ni-Mo/SiO_(2) catalysts,being that the acidity(more L and B acid sites) was modulated and organic groups interact with metal to suppress the aggregation of metal species(Ni and Mo),thereby enhancing the catalytic activity.At 750℃,the conversion(89.3%) as well as heat sink(3.99 MJ/kg) of MCH cracking obtained an optimum over Ni-Mo/SiO_(2) catalyst with addition of citric acid.
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
文摘s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.
文摘LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.