期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
轨迹数据驱动的车辆换道意图识别模型
1
作者 苑仁腾 王晨竹 +2 位作者 项乔君 郑欧 丁圣轩 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期34-44,共11页
为及时识别、预测车辆的换道行为,综合考虑目标车辆及周边车辆的时空交互关系,结合时间卷积网络(Temporal Convolutional Network,TCN)的时序处理能力和长短期记忆(Long Short Term Memory,LSTM)神经网络的门控记忆机制,构建了基于TCNL... 为及时识别、预测车辆的换道行为,综合考虑目标车辆及周边车辆的时空交互关系,结合时间卷积网络(Temporal Convolutional Network,TCN)的时序处理能力和长短期记忆(Long Short Term Memory,LSTM)神经网络的门控记忆机制,构建了基于TCNLSTM网络的车辆换道意图识别模型。首先,将目标车辆的驾驶意图分为直行、向左换道和向右换道3种类型,从CitySim车辆轨迹数据集中提取出目标车辆及对应同车道、左侧车道、右侧车道的相邻前车和相邻后车的轨迹数据,并利用中值滤波算法获得车辆运行状态指标。其次,针对统计学理论和机器学习方法面临的识别精度不高、训练时间长、参数更新慢等问题,提出利用膨胀卷积技术提取时间序列的时序特征,采用门控记忆单元捕捉时序特征的长期依赖关系,并以目标车辆及周边相邻车辆的速度、加速度、航向角、航向角变化率和相对位置信息等54个车辆状态指标为输入变量,以车辆的换道意图为输出变量,构建了一个基于TCN-LSTM网络的车辆换道意图识别模型。最后,对比分析了不同输入时间步长下TCN、支持向量机(Support Vector Machines,SVM)、LSTM和TCN-LSTM模型的识别精度。结果表明:输入时间序列长度为150帧时,TCN-LSTM模型的识别精度达到最高值96.67%;从整体分类精度来看,相比LSTM、TCN和SVM模型,TCN-LSTM模型的换道意图分类准确率分别提升了1.34、0.84和2.46个百分点,展现出了更高的分类性能。 展开更多
关键词 交通工程 换道意图 时间卷积网络 长短期记忆神经网络 车辆轨迹 citysim数据集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部