将最小二乘支持向量机(Least square support vector machine,LS-SVM)应用于小样本民机产品的可靠性预测分析。通过重构相空间的饱和嵌入维数,确定最小二乘支持向量机的最佳输入变量;然后,使用最小二乘向量机建立可靠度回归预测模型,运...将最小二乘支持向量机(Least square support vector machine,LS-SVM)应用于小样本民机产品的可靠性预测分析。通过重构相空间的饱和嵌入维数,确定最小二乘支持向量机的最佳输入变量;然后,使用最小二乘向量机建立可靠度回归预测模型,运用自动网格搜索法,优化了最小二乘支持向量机的建模参数,实现了比现有方法精度高、泛化性好的模型。训练和测试的可靠性样本取自某机型襟翼液压锁寿命可靠性数据。与神经网络模型的比较实例表明,提出的方法合理有效。展开更多
文摘将最小二乘支持向量机(Least square support vector machine,LS-SVM)应用于小样本民机产品的可靠性预测分析。通过重构相空间的饱和嵌入维数,确定最小二乘支持向量机的最佳输入变量;然后,使用最小二乘向量机建立可靠度回归预测模型,运用自动网格搜索法,优化了最小二乘支持向量机的建模参数,实现了比现有方法精度高、泛化性好的模型。训练和测试的可靠性样本取自某机型襟翼液压锁寿命可靠性数据。与神经网络模型的比较实例表明,提出的方法合理有效。