In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and ...In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.展开更多
By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dis...By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions( viz. 5 wt% Na_2SO_4, MgSO_4, Na_2SO_^(4+)Na Cl and Na_2SO_^(4+)Na Cl+Na_2CO_3) on C-S-H microstructure in portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO_4 solution, Mg2+ promotes the decalcification of C-S-H by SO_4^(2-),increasing silicate tetrahedra polymerization and mean chain length(MCL) of C-S-H. However, the substituting degree of Al^(3+) for Si^(4+)(Al[4]/Si) in the paste does not change evidently. Effect of Na_2SO_4 solution on C-S-H is not significantly influenced by Na Cl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO_4^(2-) and CO_3^(2-) attack, as well as the activation of fly ash by SO_4^(2-) attack will increase the MCL and Al[4]/Si, which are both higher than that under Na_2SO_4 corrosion, MgSO_4 or Na_2SO_4 +Na Cl coordination corrosion.展开更多
The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by sc...The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by scanning electron microscope(SEM),scanning probe microscopy(SPM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The results showed that the resistance of tin coating,Rc,was essentially constant but the charge transfer resistance,Rct,decreased by 2 orders of magnitude,which indicated that the tin coating was not seriously corroded while the carbon steel substrate was corroded continuously.The corrosion of tinplate in 0.5 mol/L NaCl solution was mainly the dissolution of carbon steel substrate because of the defects in the tin layer and the corrosion product was mainly γ-FeOOH.展开更多
The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potentia...The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.展开更多
The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were i...The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.展开更多
Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray s...Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). It is indicated that chloride ions in sweat solution accelerate the anodic active dissolution of brass, which is the main reason of pitting corrosion and dezincification corrosion. Meanwhile, lactic acid and ammonia water also promote the anode reaction. The corrosion products on the surface are mainly composed of basic copper chloride, cuprous oxide, the complex consisting of urea in association with copper, and few lactate ion. The kinetics of pitting corrosion development obeys the following equation of J0=0.3735(t+185.93)^-1/2, and the process is controlled by dissolution of salt deposited on pit surface.展开更多
In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless...In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.展开更多
Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behav...Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.展开更多
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time de...Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.展开更多
Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for...Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.展开更多
The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vac...The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vacuum furnace, holding for 16 h at 177℃, and then cooling in air. The results showed intergranular corrosion (IGC) occurred as an aged AZ80 sample was immersed in 3.5 wt pct NaCI aqueous solution for 1 h and the narrow path attack progressed predominantly along the bulk β phase in the grain boundaries or took place in the eutectic areas. IGC was attributed to the network distribution of β phase along the grain boundaries, the depleted aluminium in the precipitation areas and the breakdown potential.展开更多
The solution treatment parameters,mechanical properties and corrosion behavior of binary Mg-4Zn alloy were investigated.The results showed that after the solution treatment at 335℃ for 16 h,Mg-4Zn alloy had an ultima...The solution treatment parameters,mechanical properties and corrosion behavior of binary Mg-4Zn alloy were investigated.The results showed that after the solution treatment at 335℃ for 16 h,Mg-4Zn alloy had an ultimate tensile strength of 184.13 MPa and elongation of 9.43%.Furthermore,the corrosion resistance was evaluated by electrochemical measurements and immersion tests in 3.5%NaCl solution.The results revealed that the corrosion current density of the solution treatment Mg alloy was 11.2µA/cm^(−2),it was lower than 15.8µA/cm^(−2) for the as-cast Mg alloy under the same conditions,which was greatly associated with the micro-cathode effect of the second phases.展开更多
To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers...To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers formed in the same concentration (0.1 mol/L) LiOHand KOH solutions. Even though the oxide layers have an equal thickness, the pene-tration depth ofK^+ is shallower than that of Li^+, and the penetration depth of OH^- corroded in KOH solution isalso shal-ower than that corroded in LiOH solution. It shows that the diffusion of OH^- into oxidelayer is accompanied by the corresponding cation. The difference of degradation effect of LiOH andKOH solutions on the corrosion resistance of Zircaloy-4 was discussed.展开更多
The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homoge...The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homogenize its microstructure by dissolving most of theβ-Mg 17 Al 12 phase at the vicinity of grain boundaries.The electrochemical impedance and biocorrosion performances of these two different microstructures(as-cast and T4 heat treated AZ91 Mg-alloys)in Ringer solution were evaluated by electrochemical impendence spectroscopy,potentiodynamic polarization and weight loss method.EIS spectra showed that both microstructures exhibit similar dynamic response as a function of the immersion time;however,the value of impedance and maximum phase angle are about 50%higher in as-cast AZ91 Mg-alloy as compared to that of homogenized AZ91 Mg-alloy.Weight loss measurement indicated that corrosion resistance of as-cast AZ91 was significantly better than that of homogenized AZ91.Microstructural and XRD analysis revealed that as-cast AZ91 contains a passive film of MgCO_(3)and CaCO_(3)precipitates with near spherical morphologies,whereas homogenized AZ91 comprised mainly unstable Mg(OH)_(2)film featured by irregular plate-like morphologies.展开更多
Effect of the second phase in the micro-galvanic corrosion of a commercial Mg alloy containing rare earth elements, cast WE43 alloy,was investigated in 0.6 M NaCl solution and 0.6 M Na_(2)SO_(4)solution by scanning el...Effect of the second phase in the micro-galvanic corrosion of a commercial Mg alloy containing rare earth elements, cast WE43 alloy,was investigated in 0.6 M NaCl solution and 0.6 M Na_(2)SO_(4)solution by scanning electron microscopy(SEM) observations, scanning Kelvin probe force microscopy(SKPFM) analysis, hydrogen evolution, weight loss measurement, and electrochemical techniques. It is confirmed that the second phase of cast WE43 alloy is more active than Mg matrix and exhibits an anodic role in the micro-galvanic corrosion with α-Mg matrix as cathode and dissolves preferentially in Na_(2)SO_(4)solution, in contrast to the situation in NaCl solution. The corrosion rate of cast WE43 alloy in Na_(2)SO_(4)solution is much higher than that in NaCl solution, which is different from the conventional wisdom and could be attributed to the different role of the second phase in the micro-galvanic corrosion in two solutions.展开更多
Pitting corrosion behaviour of Monel-400 alloy in 3.5 wt pct NaCl sodium chloride solution has been investigated using the cyclic potentiodynamic anodic polarization technique. The effect of chloride ion concentration...Pitting corrosion behaviour of Monel-400 alloy in 3.5 wt pct NaCl sodium chloride solution has been investigated using the cyclic potentiodynamic anodic polarization technique. The effect of chloride ion concentration, pH values and difFerent temperatures on the pitting parameters were determined. The morphology of the pits produced after anodic polarization treatments was inspected by scanning electron microscope (SEM). The results indicated that, the increase in chloride ion concentration shifts Epit and Eprot of the alloy toward negative values and the pitting potential is much more dependent on pH value in the basic region. The breakdown of passivity with increasing temperature may be due to kinetic changes of passivating films and dissolution rate of the alloy in its passive state展开更多
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al...Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.展开更多
Mg-8Li-3Al+xCe alloys(x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, ...Mg-8Li-3Al+xCe alloys(x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaC l solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization(PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al(LA83) alloy results in the formation of Al_2Ce intermetallic phase, refines both the α-Mg phase and the Mg_(17)Al_(12) intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.展开更多
The corrosion behavior of pure aluminum in FeCl3 solution was investigated mainly by in-situ AFM(Atomic Force Microscopy).The results of combined researches of AFM,SEM(Scanning Electron Microscopy)and EDAX(Energy Disp...The corrosion behavior of pure aluminum in FeCl3 solution was investigated mainly by in-situ AFM(Atomic Force Microscopy).The results of combined researches of AFM,SEM(Scanning Electron Microscopy)and EDAX(Energy Dispersive Analysis of X-ray)show that in addition to uniform attack,pitting corrosion takes place also on pure aluminum surface in FeCl3 solution at open-circuit potential,and impurity elements Fe and Cu are found enriched in corrosion product.In-situ AFM was also used to examine the initiation and development of pitting corrosion of pure aluminum induced by potentiodynamic sweep,and the repassivation of an active pit is observed.AFM tip scratching technique was used to produce a physical defect on metal surface,which is traced by in-situ AFM and it is found that the defect is likely to be preferentially attacked and evolve to pitting corrosion.展开更多
基金the National Natural Science Foundation of China (21376282,21676035,21878029)Chongqing Science and Technology Commission (cstc2018jcyjAX0668)+2 种基金Shandong Province Natural Science Foundation (ZR2020QB18)China Postdoctoral Science Foundation (22012 T50762&2011 M501388)Graduate Student Research Innovation Project,Chongqing University (CYB18046)。
文摘In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.
基金Funded by the Major State Basic Research Development Program of China(“973” Program)(No.2015CB655101)Natural Science Foundation of Hebei(No.E2016209283)+1 种基金National Natural Science Foundation of China(No.51402003)Open Foundation of Road Bridge and Structural Engineering Key Laboratory WHUT,China(No.DQZDJJ201504)
文摘By means of ^(29)Si and ^(27)Al magic angle spinning nuclear magnetic resonance(MAS NMR) combined with deconvolution technique, X-ray diffraction(XRD), scanning electron microscopy(SEM) as well as energy dispersive X-ray system(EDX), the effect of 5 wt% corrosive solutions( viz. 5 wt% Na_2SO_4, MgSO_4, Na_2SO_^(4+)Na Cl and Na_2SO_^(4+)Na Cl+Na_2CO_3) on C-S-H microstructure in portland cement containing 30 wt% fly ash was investigated.The results show that, in MgSO_4 solution, Mg2+ promotes the decalcification of C-S-H by SO_4^(2-),increasing silicate tetrahedra polymerization and mean chain length(MCL) of C-S-H. However, the substituting degree of Al^(3+) for Si^(4+)(Al[4]/Si) in the paste does not change evidently. Effect of Na_2SO_4 solution on C-S-H is not significantly influenced by Na Cl solution, while the MCL and Al[4]/Si of C-S-H in fly ashcement paste slightly change. However, the decalcification of C-S-H by SO_4^(2-) and CO_3^(2-) attack, as well as the activation of fly ash by SO_4^(2-) attack will increase the MCL and Al[4]/Si, which are both higher than that under Na_2SO_4 corrosion, MgSO_4 or Na_2SO_4 +Na Cl coordination corrosion.
基金Project(2011CB610500) supported by the National Basic Research Program of China
文摘The corrosion process of tinplate in 0.5 mol/L NaCl solution was investigated using the electrochemical impedance spectroscopy(EIS),and the morphology and structure of the corrosion products were characterized by scanning electron microscope(SEM),scanning probe microscopy(SPM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The results showed that the resistance of tin coating,Rc,was essentially constant but the charge transfer resistance,Rct,decreased by 2 orders of magnitude,which indicated that the tin coating was not seriously corroded while the carbon steel substrate was corroded continuously.The corrosion of tinplate in 0.5 mol/L NaCl solution was mainly the dissolution of carbon steel substrate because of the defects in the tin layer and the corrosion product was mainly γ-FeOOH.
基金Project(2012FY113000)supported by the National Science and Technology Basic Project of the Ministry of Science and Technology of ChinaProjects(51171037+2 种基金5113401351101024)supported by the National Natural Science Foundation of ChinaProject(14B430009)supported by the Science Research Fund of Education Department of Henan Province,China
文摘The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.
文摘The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.
基金Project(21276036)supported by the National Natural Science Foundation of ChinaProject(2009AA05Z120)supported by the National High-tech Research and Development Program of China+1 种基金Project(2014025018)supported by the Liaoning Provincial Natural Science Foundation of ChinaProject(3132014323)supported by the Fundamental Research Funds for the Central Universities,China
文摘Corrosion behavior of brass coinage was investigated in synthetic sweat solution by electrochemical measurement and surface analysis methods including scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). It is indicated that chloride ions in sweat solution accelerate the anodic active dissolution of brass, which is the main reason of pitting corrosion and dezincification corrosion. Meanwhile, lactic acid and ammonia water also promote the anode reaction. The corrosion products on the surface are mainly composed of basic copper chloride, cuprous oxide, the complex consisting of urea in association with copper, and few lactate ion. The kinetics of pitting corrosion development obeys the following equation of J0=0.3735(t+185.93)^-1/2, and the process is controlled by dissolution of salt deposited on pit surface.
基金Project(CKJA201202)supported by the Innovation Fund Key Project of Nanjing Institute of Technology,ChinaProject(51301088)supported by the National Natural Science Foundation of China
文摘In order to improve corrosion resistance of stainless steel 316L in warm acidic solution, Ni?Cu?P coatings with high copper and phosphorus contents were deposited onto stainless steel 316L substrates via electroless plating. The structure of the film and its resistance to corrosion in a warm acidic environment were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction spectrometry (XRD), polarization curves, electrochemical impedance spectroscopy (EIS), and dipping corrosion tests, respectively. The results demonstrate that Ni?Cu?P coatings consist of two types of nodules, which are 19.98% Cu and 39.17% Cu (mass fraction) respectively. The corrosion resistance of the 316L substrate when subjected to a warm acidic solution is significantly improved by the addition of the new type of the Ni?Cu?P coating. The as-plated coatings demonstrate better corrosion resistance than annealed coatings. As-plated coatings and those annealed at 673 K are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 773 and 873 K.
基金financially supported by the National Basic Research Priorities Program of China (No.2009CB623203)the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1017)
文摘Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.
文摘Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.
文摘Flow-induced corrosion consists electrochemical and mechanical components. The present paper has to assessed the role of chloride ion and dissolved oxygen in the electrochemical component of flow induced corrosion for AA5083-H321 aluminum-magnesium alloy which is extensively used in the construction of high-speed boats, submarines, hovercrafts, and desalination systems, in NaCI solutions. Electrochemical tests were carried out at flow velocities of 0, :2, 5, 7 and 10 m/s, in aerated and deaerated NaCI solutions with different sodium chloride concentrations. The results showed that the high rate of oxygen reduction under hydrodynamic conditions causes an increase in the density of pits on the surface. The increase of chloride ions concentration under flow conditions accelerates the rate of anodic reactions, but have no influence on the cathodic reactions. Thus, in the current work, it was found that under flow conditions, due to the elimination of corrosion products inside the pits, corrosion resistance of the alloy is increased.
基金the National HiTech R. & D. Program under grant No. 2001AA331050 Key Natural Science Foundation of Chongqing Science and Technology Commission under grant No. 200413A4002 Science & Technology Research Project of Chongqing Education Commission under grant No. KJ050604.
文摘The corrosion morphologies of aged magnesium alloy AZ80 were investigated by immersion corrosion tests, scanning electron microscopy (SEM), electrochemical measurement. The T5 heat treatment was carried out in a vacuum furnace, holding for 16 h at 177℃, and then cooling in air. The results showed intergranular corrosion (IGC) occurred as an aged AZ80 sample was immersed in 3.5 wt pct NaCI aqueous solution for 1 h and the narrow path attack progressed predominantly along the bulk β phase in the grain boundaries or took place in the eutectic areas. IGC was attributed to the network distribution of β phase along the grain boundaries, the depleted aluminium in the precipitation areas and the breakdown potential.
文摘The solution treatment parameters,mechanical properties and corrosion behavior of binary Mg-4Zn alloy were investigated.The results showed that after the solution treatment at 335℃ for 16 h,Mg-4Zn alloy had an ultimate tensile strength of 184.13 MPa and elongation of 9.43%.Furthermore,the corrosion resistance was evaluated by electrochemical measurements and immersion tests in 3.5%NaCl solution.The results revealed that the corrosion current density of the solution treatment Mg alloy was 11.2µA/cm^(−2),it was lower than 15.8µA/cm^(−2) for the as-cast Mg alloy under the same conditions,which was greatly associated with the micro-cathode effect of the second phases.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 50301009 and 50171039)the Education Development Foundation of Shanghai (No. 03AK24)
文摘To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers formed in the same concentration (0.1 mol/L) LiOHand KOH solutions. Even though the oxide layers have an equal thickness, the pene-tration depth ofK^+ is shallower than that of Li^+, and the penetration depth of OH^- corroded in KOH solution isalso shal-ower than that corroded in LiOH solution. It shows that the diffusion of OH^- into oxidelayer is accompanied by the corresponding cation. The difference of degradation effect of LiOH andKOH solutions on the corrosion resistance of Zircaloy-4 was discussed.
文摘The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homogenize its microstructure by dissolving most of theβ-Mg 17 Al 12 phase at the vicinity of grain boundaries.The electrochemical impedance and biocorrosion performances of these two different microstructures(as-cast and T4 heat treated AZ91 Mg-alloys)in Ringer solution were evaluated by electrochemical impendence spectroscopy,potentiodynamic polarization and weight loss method.EIS spectra showed that both microstructures exhibit similar dynamic response as a function of the immersion time;however,the value of impedance and maximum phase angle are about 50%higher in as-cast AZ91 Mg-alloy as compared to that of homogenized AZ91 Mg-alloy.Weight loss measurement indicated that corrosion resistance of as-cast AZ91 was significantly better than that of homogenized AZ91.Microstructural and XRD analysis revealed that as-cast AZ91 contains a passive film of MgCO_(3)and CaCO_(3)precipitates with near spherical morphologies,whereas homogenized AZ91 comprised mainly unstable Mg(OH)_(2)film featured by irregular plate-like morphologies.
基金funded by the National Key Research and Development Program of China (Grant No. 2016YFB0301001 and 2016YFB0301101)Major Projects for Collaborative Innovation of Zhengzhou (Grant No.18XTZX12010)Certificate of Postdoctoral Research Grant in Henan Province (Grant No. 201903011)。
文摘Effect of the second phase in the micro-galvanic corrosion of a commercial Mg alloy containing rare earth elements, cast WE43 alloy,was investigated in 0.6 M NaCl solution and 0.6 M Na_(2)SO_(4)solution by scanning electron microscopy(SEM) observations, scanning Kelvin probe force microscopy(SKPFM) analysis, hydrogen evolution, weight loss measurement, and electrochemical techniques. It is confirmed that the second phase of cast WE43 alloy is more active than Mg matrix and exhibits an anodic role in the micro-galvanic corrosion with α-Mg matrix as cathode and dissolves preferentially in Na_(2)SO_(4)solution, in contrast to the situation in NaCl solution. The corrosion rate of cast WE43 alloy in Na_(2)SO_(4)solution is much higher than that in NaCl solution, which is different from the conventional wisdom and could be attributed to the different role of the second phase in the micro-galvanic corrosion in two solutions.
文摘Pitting corrosion behaviour of Monel-400 alloy in 3.5 wt pct NaCl sodium chloride solution has been investigated using the cyclic potentiodynamic anodic polarization technique. The effect of chloride ion concentration, pH values and difFerent temperatures on the pitting parameters were determined. The morphology of the pits produced after anodic polarization treatments was inspected by scanning electron microscope (SEM). The results indicated that, the increase in chloride ion concentration shifts Epit and Eprot of the alloy toward negative values and the pitting potential is much more dependent on pH value in the basic region. The breakdown of passivity with increasing temperature may be due to kinetic changes of passivating films and dissolution rate of the alloy in its passive state
基金financially supported by the National Natural Science Foundation of China(No.51371039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Jiangsu Province,China
文摘Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.
文摘Mg-8Li-3Al+xCe alloys(x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaC l solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization(PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al(LA83) alloy results in the formation of Al_2Ce intermetallic phase, refines both the α-Mg phase and the Mg_(17)Al_(12) intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.
文摘The corrosion behavior of pure aluminum in FeCl3 solution was investigated mainly by in-situ AFM(Atomic Force Microscopy).The results of combined researches of AFM,SEM(Scanning Electron Microscopy)and EDAX(Energy Dispersive Analysis of X-ray)show that in addition to uniform attack,pitting corrosion takes place also on pure aluminum surface in FeCl3 solution at open-circuit potential,and impurity elements Fe and Cu are found enriched in corrosion product.In-situ AFM was also used to examine the initiation and development of pitting corrosion of pure aluminum induced by potentiodynamic sweep,and the repassivation of an active pit is observed.AFM tip scratching technique was used to produce a physical defect on metal surface,which is traced by in-situ AFM and it is found that the defect is likely to be preferentially attacked and evolve to pitting corrosion.