The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon t...The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.展开更多
A storage and emission functional material of [Ca24Al28O64]^4+·(Cl^-)3.80(O^2-)0.10 (C12A7-Cl^-), was prepared by the solid-state reactions of CaCO3, γ-Al2O3, and CaCl2 in Cl2/Ar mixture atmosphere. The a...A storage and emission functional material of [Ca24Al28O64]^4+·(Cl^-)3.80(O^2-)0.10 (C12A7-Cl^-), was prepared by the solid-state reactions of CaCO3, γ-Al2O3, and CaCl2 in Cl2/Ar mixture atmosphere. The anionic species stored in the C12A7-Cl^- material were dominated by Cl^-, about (2.21±0.24) × 10^21 cm^-3, accompanied by a small amount of O^2-, O^-, and O2^-, measured via ion chromatography, electron paramagnetic resonance, and raman spectra measurements. These results also corroborate identification of time-of-flight mass spectroscopy--the anionic species emitted from the C12A7-Cl^- surface were dominated by the Cl^- (about 90%) together with a small amount of O^- and electrons. The structure and morphological alterations of the material were investigated via X-ray diffraction and field emission scanning electron microscope, respectively.展开更多
Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea ...Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea water (3.5% NaCl, mass fraction) was studied using Tafel plot and electrochemical impedance spectroscopy (EIS) techniques. The corrosion resistance of the investigated alloys with various Ni contents (0.5%?10%, mass fraction) was compared with that of Zn. The results show that the corrosion resistance of Zn?Ni alloys (except 0.5% Ni) is superior to that of Zn. The 10% Ni gives the highest corrosion resistance due to the formation ofγ-Zn3Ni withγ-ZnNi phases in the alloy. In the case of alloy I (0.5% Ni), it exhibits a higher corrosion rate (less corrosion resistance) than Zn.展开更多
Pot experiments were conducted to study the effect of Cl ̄- on transformation of fertilizer N, number ofmicroorganisms and enzyme activities in soils. It is indicated that Cl ̄- did not show significant influenceon to...Pot experiments were conducted to study the effect of Cl ̄- on transformation of fertilizer N, number ofmicroorganisms and enzyme activities in soils. It is indicated that Cl ̄- did not show significant influenceon total number of bacteria, actinomyces and fungi, but significantly reduced the number of nitrosobacteria,which led to decrease of NO content in the soil. Application of Cl ̄- to soil could significantly enhance theactivities of phosphatase and urease in the coastal saline soil and orthic aquisols. In hilly red soil, however,the application of Cl ̄- at the rate of 500-1000 mg Cl ̄- kg ̄(-1) soil significantly decreased the activity of thetwo enzymes mentioned above.展开更多
Abstract The study on the catalysis of ionic liquids for alkylation of benzene with 1-octadecene to synthesize LAB (linear alkylbenzenes) was performed. The results showed that the most important factor that governe...Abstract The study on the catalysis of ionic liquids for alkylation of benzene with 1-octadecene to synthesize LAB (linear alkylbenzenes) was performed. The results showed that the most important factor that governed the conversion of olefin and selectivity of LAB was reaction temperature. Moreover, the effects of different ionic liquids and molar ratio of benzene to 1-octadecene on the conversion and selectivity were obviously in different degrees. The reaction temperature, molar ratio of benzene to 1-octadecene and the amount of catalyst were lower, compared with the traditional reaction technologies. The experimental results demonstrated that the ionic liquid had higher activity at 30℃, with over 98% selectivity of monoalkylbenzene and 100% conversion of the olefin at the molar ratio 0.08 of FeCl3 in ionic liquid to 1-octadecene and 10 for benzene to 1-octadecene.展开更多
Up to now the mechanism of Priedel-Crafts reactions catalyzed by ionic liquidhave not been fully understood, while carbocation mechanism was assumed. It was found that thesource of H^+ and the route of reaction initia...Up to now the mechanism of Priedel-Crafts reactions catalyzed by ionic liquidhave not been fully understood, while carbocation mechanism was assumed. It was found that thesource of H^+ and the route of reaction initiated the alkylation of benzene with ethylene catalyzedby [bmim]Cl/FeCl_3 ionic liquid. The fact that dewatered ionic liquids have catalytic activity forthe alkylation of benzene with ethylene suggests that there exists a new catalytic route. Thedistinctly Bronsted acid properties of 2-H in [bmim]Cl were found through FT-IR and HNMR analysis of[bmim]Cl after titration with water free KOH in alcohol solution. In addition, the chemical shiftsof proton on the [bmim]Cl ring, especially 2-H, are sensitive to the change of FeCl_3 content andshifted downfield when FeCl_3 was added into [bmim]Cl to form ionic liquid. Thus 2-H was easy to bedisengaged from imidazolium ring with formation of H^+ to initiate the reaction. Theisotope-substituted method was employed to prove this mechanism, through the GC-MS analysis ofalkylation products of deuterated benzene with ethylene. The route of alkylation catalyzed by FeCl_3ionic liquid was found to follow the carbocation mechanism, the resource of H^+ was presented andproved using HNMR analysis of ionic liquid to inspect the intensity change of 2-H. It was found thatthe intensity of 2-H reduced 23% after reaction showing that the H^+ arising from alkylationreaction was supplied by 2-H on the imidazole ring.展开更多
In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-l...In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-linking reaction was studied.The O-containing functional groups change the weight loss and H_2O,CO_2,CO yields of bituminous coal before and after[H0Emim][BF_4]and[Amim]Cl pre-treatment and were detected by Fourier Transform Infrared spectroscopy(FT1R) and Thermo Gravimetric(TC) analysis.The results show that | AmimjCI has a weaker ability to inhibit the cross-linking reaction of bituminous coal compared to[HOEmim][BF_4].Besides,based on Quantum Chemistry calculation,it was found that the different inhibiting effects of |H0Emim][BF_4]and[Amim]Cl are greatly related to their anions and the H linked with C2 atom on the imidazole ring.The H-donor ability of coal will be enhanced by[HOEmim][BF_4]leading to a weaker cross-linking reaction of coal.展开更多
采用扫描电镜观察了不同碱度(0、2、4 g/L Na HCO_3)胁迫对尼罗罗非鱼(Oreochromis niloticus)鳃离子细胞形态变化的影响,并采用免疫组化技术观察了鳃、肾、肠中4个HCO_3^-转运因子碳酸酐酶(CAⅡ、CAⅣ)、碳酸氢钠协同转运载体(SLC4A4)...采用扫描电镜观察了不同碱度(0、2、4 g/L Na HCO_3)胁迫对尼罗罗非鱼(Oreochromis niloticus)鳃离子细胞形态变化的影响,并采用免疫组化技术观察了鳃、肾、肠中4个HCO_3^-转运因子碳酸酐酶(CAⅡ、CAⅣ)、碳酸氢钠协同转运载体(SLC4A4)、Cl^-/HCO_3^-离子交换体(SLC26A6)的阳性反应变化。扫描电镜结果表明,鳃离子细胞分布在鳃小片基部。根据其表面开孔形状和尺寸,可分为Ⅰ型、Ⅱ型、Ⅲ型和Ⅳ型4种亚型,各亚型离子细胞的开孔尺寸随碱度胁迫强度增高呈正比增大,Ⅲ型离子细胞开孔尺寸变化最明显(P<0.01);离子细胞总数目也随碱度升高而增加,Ⅲ型离子细胞数目上升最为显著(P<0.01)。免疫组化结果表明,在淡水、碱水组中,CAⅡ、CAⅣ、SLC4A4、SLC26A6在鳃小片基部和肾中均有阳性反应,且随着碱度升高,阳性反应增强,但在肠道中未观察到阳性反应。本研究结果初步表明,尼罗罗非鱼可通过鳃离子细胞形态和数量调节适应碱度变化,鳃和肾为主要应答调节器官。展开更多
基金Project(2018YFC1900304)supported by the National Key R&D Program of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,ChinaProject(2017SK2420)supported by the Science and Technology of Hunan Province,China。
文摘The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.50772107), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Basic Research Program (No.2007CB210206) of Ministry of Science and Technology of China.
文摘A storage and emission functional material of [Ca24Al28O64]^4+·(Cl^-)3.80(O^2-)0.10 (C12A7-Cl^-), was prepared by the solid-state reactions of CaCO3, γ-Al2O3, and CaCl2 in Cl2/Ar mixture atmosphere. The anionic species stored in the C12A7-Cl^- material were dominated by Cl^-, about (2.21±0.24) × 10^21 cm^-3, accompanied by a small amount of O^2-, O^-, and O2^-, measured via ion chromatography, electron paramagnetic resonance, and raman spectra measurements. These results also corroborate identification of time-of-flight mass spectroscopy--the anionic species emitted from the C12A7-Cl^- surface were dominated by the Cl^- (about 90%) together with a small amount of O^- and electrons. The structure and morphological alterations of the material were investigated via X-ray diffraction and field emission scanning electron microscope, respectively.
文摘Zn plays an important role in the protection of iron and steel from corrosion in sea water, and the alloying of Zn and Ni can improve its corrosion resistance. The corrosion behavior of Zn?Ni alloys in synthetic sea water (3.5% NaCl, mass fraction) was studied using Tafel plot and electrochemical impedance spectroscopy (EIS) techniques. The corrosion resistance of the investigated alloys with various Ni contents (0.5%?10%, mass fraction) was compared with that of Zn. The results show that the corrosion resistance of Zn?Ni alloys (except 0.5% Ni) is superior to that of Zn. The 10% Ni gives the highest corrosion resistance due to the formation ofγ-Zn3Ni withγ-ZnNi phases in the alloy. In the case of alloy I (0.5% Ni), it exhibits a higher corrosion rate (less corrosion resistance) than Zn.
文摘Pot experiments were conducted to study the effect of Cl ̄- on transformation of fertilizer N, number ofmicroorganisms and enzyme activities in soils. It is indicated that Cl ̄- did not show significant influenceon total number of bacteria, actinomyces and fungi, but significantly reduced the number of nitrosobacteria,which led to decrease of NO content in the soil. Application of Cl ̄- to soil could significantly enhance theactivities of phosphatase and urease in the coastal saline soil and orthic aquisols. In hilly red soil, however,the application of Cl ̄- at the rate of 500-1000 mg Cl ̄- kg ̄(-1) soil significantly decreased the activity of thetwo enzymes mentioned above.
基金Supported by the National Natural Science Foundation of China (No.20276038) and Beijing Natural Science Foundation (No.2052010).
文摘Abstract The study on the catalysis of ionic liquids for alkylation of benzene with 1-octadecene to synthesize LAB (linear alkylbenzenes) was performed. The results showed that the most important factor that governed the conversion of olefin and selectivity of LAB was reaction temperature. Moreover, the effects of different ionic liquids and molar ratio of benzene to 1-octadecene on the conversion and selectivity were obviously in different degrees. The reaction temperature, molar ratio of benzene to 1-octadecene and the amount of catalyst were lower, compared with the traditional reaction technologies. The experimental results demonstrated that the ionic liquid had higher activity at 30℃, with over 98% selectivity of monoalkylbenzene and 100% conversion of the olefin at the molar ratio 0.08 of FeCl3 in ionic liquid to 1-octadecene and 10 for benzene to 1-octadecene.
文摘Up to now the mechanism of Priedel-Crafts reactions catalyzed by ionic liquidhave not been fully understood, while carbocation mechanism was assumed. It was found that thesource of H^+ and the route of reaction initiated the alkylation of benzene with ethylene catalyzedby [bmim]Cl/FeCl_3 ionic liquid. The fact that dewatered ionic liquids have catalytic activity forthe alkylation of benzene with ethylene suggests that there exists a new catalytic route. Thedistinctly Bronsted acid properties of 2-H in [bmim]Cl were found through FT-IR and HNMR analysis of[bmim]Cl after titration with water free KOH in alcohol solution. In addition, the chemical shiftsof proton on the [bmim]Cl ring, especially 2-H, are sensitive to the change of FeCl_3 content andshifted downfield when FeCl_3 was added into [bmim]Cl to form ionic liquid. Thus 2-H was easy to bedisengaged from imidazolium ring with formation of H^+ to initiate the reaction. Theisotope-substituted method was employed to prove this mechanism, through the GC-MS analysis ofalkylation products of deuterated benzene with ethylene. The route of alkylation catalyzed by FeCl_3ionic liquid was found to follow the carbocation mechanism, the resource of H^+ was presented andproved using HNMR analysis of ionic liquid to inspect the intensity change of 2-H. It was found thatthe intensity of 2-H reduced 23% after reaction showing that the H^+ arising from alkylationreaction was supplied by 2-H on the imidazole ring.
基金the support from the National Natural Science Foundation of China(Nos.51304073and 51304071)the Educational Commission of Henan Province(Nos.13A440324 and 12B440004)+1 种基金the Open Projects of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.12KF02)Henan Polytechnic University(Nos.B2012-068 and B2012-085)
文摘In order to reduce the hazard of coal spontaneous combustion,the cross-linking reaction between O-containing functional groups of coal should be inhibited.So the inhibitory effect of an ionic liquid(IL) on the cross-linking reaction was studied.The O-containing functional groups change the weight loss and H_2O,CO_2,CO yields of bituminous coal before and after[H0Emim][BF_4]and[Amim]Cl pre-treatment and were detected by Fourier Transform Infrared spectroscopy(FT1R) and Thermo Gravimetric(TC) analysis.The results show that | AmimjCI has a weaker ability to inhibit the cross-linking reaction of bituminous coal compared to[HOEmim][BF_4].Besides,based on Quantum Chemistry calculation,it was found that the different inhibiting effects of |H0Emim][BF_4]and[Amim]Cl are greatly related to their anions and the H linked with C2 atom on the imidazole ring.The H-donor ability of coal will be enhanced by[HOEmim][BF_4]leading to a weaker cross-linking reaction of coal.
文摘采用扫描电镜观察了不同碱度(0、2、4 g/L Na HCO_3)胁迫对尼罗罗非鱼(Oreochromis niloticus)鳃离子细胞形态变化的影响,并采用免疫组化技术观察了鳃、肾、肠中4个HCO_3^-转运因子碳酸酐酶(CAⅡ、CAⅣ)、碳酸氢钠协同转运载体(SLC4A4)、Cl^-/HCO_3^-离子交换体(SLC26A6)的阳性反应变化。扫描电镜结果表明,鳃离子细胞分布在鳃小片基部。根据其表面开孔形状和尺寸,可分为Ⅰ型、Ⅱ型、Ⅲ型和Ⅳ型4种亚型,各亚型离子细胞的开孔尺寸随碱度胁迫强度增高呈正比增大,Ⅲ型离子细胞开孔尺寸变化最明显(P<0.01);离子细胞总数目也随碱度升高而增加,Ⅲ型离子细胞数目上升最为显著(P<0.01)。免疫组化结果表明,在淡水、碱水组中,CAⅡ、CAⅣ、SLC4A4、SLC26A6在鳃小片基部和肾中均有阳性反应,且随着碱度升高,阳性反应增强,但在肠道中未观察到阳性反应。本研究结果初步表明,尼罗罗非鱼可通过鳃离子细胞形态和数量调节适应碱度变化,鳃和肾为主要应答调节器官。