期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gas Exchange, Xylem Ions and Abscisic Acid Response to Na^+-Salts and Cl^--Salts in Populus euphratica 被引量:8
1
作者 陈少良 李金克 +3 位作者 王天华 王沙生 Andrea POLLE Aloys HüTTERMANN 《Acta Botanica Sinica》 CSCD 2003年第5期561-566,共6页
We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) ... We investigated the osmotic stress and ion-specific effects on xylem abscisic acid (ABA), ion uptake and transport and gas exchange in one-year-old seedlings of Populus euphratica Oliv. Net photosynthetic rates (P-n) and unit transpiration rates (TRN) were both significantly decreased upon an osmotic shock caused by PEG 6000 solution (osmotic potential = -0.24 MPa) or a saline, which was applied by 50 mmol/L Na+-salts (NaNO3 : NaHCO3 : NaH2PO4 = 5 : 4 : 1, pH 6.8, osmotic potential = -0.24 MPa) or by 50 mmol/L Cl--salts (KCl : NH4Cl = 1:1, osmotic potential = -0.24 MPa). However, salt-treated P. euphratica plants maintained typically higher TRN than those exposed to PEG. Xylem ABA concentrations increased rapidly following the PEG treatment, exhibiting peaking values at 1 h, then returning to pre-stress levels, followed by a gradual increase. Similarly, both Na+-treated and Cl--treated trees exhibited a rapid rise of ABA after salt stress was initiated. Notably, salt-treated plants maintained a relatively higher ABA than PEG-treated plants in a longer term. Collectively, results suggest that osmotic stress and ion-specific effects were both responsible for salt-induced ABA in P. euphratica : the initial rapid increase of xylem ABA appears to be a consequence of an osmotic shock, whereas specific salt effects seem to be responsible for ABA accumulation later on. Compared with Cl--treated trees, a higher inhibitory effect on gas exchange (P-n and TRN) was observed in Na+-salt plants, resulting from its long-sustained ABA and higher salt concentrations in the xylem. Displacement of membrane-associated Ca2+ by Na+ and the lesser capacity in Na+ compartmentation in root vacuoles likely contribute to the high influx of Na+ and Cl- in Na+-treated plants. Xylem K+, Ca2+ and Mg2+ concentrations were elevated by external Na+ -salts and Cl--salts, suggesting that P. euphratica maintained a higher capacity in nutrient uptake under saline conditions, which makes a contribution to its salinity tolerance. 展开更多
关键词 xylem ABA MACRONUTRIENTS TRANSPIRATION photosynthesis Na+-salts cl--salts PEG Populus euphratica
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部