This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experimen...This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experiments were conducted in the temperature range from 750℃ to 950℃, and the effects of heat-treatment parameters on the microstructural evolution and diffusion behavior were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and electron-probe microanalysis. Carbon atoms within the steel matrix were observed to diffuse toward the titanium matrix and to aggregate at the bonding interface at 850℃ or lower; in contrast, when the temperature exceeded 850℃, the mutual diffusion of Ti and Fe occurred, along with the diffusion of C atoms, resulting in the for- marion of Ti-Fe intermetallics (Fe2Ti/FeTi). The diffusion distances of C, Ti, and Fe atoms increased with increasing heating temperature and/or holding time. On the basis of this diffusion behavior, a novel diffusion model was proposed. This model considers the effects of various factors, including the curvature radius of the curved interface, the diffusion coefficient, the heating temperature, and the holding rime. The experimental results show good agreement with the calculated values. The proposed model could clearly provide a general prediction of the elements' diffusion at both straight and curved interfaces.展开更多
The residual stress generated in the laser cladding could lead to undesirable distortions or even crack formation. In order to better understand the evolution/yielding process of stress field,a 3 D finite-element ther...The residual stress generated in the laser cladding could lead to undesirable distortions or even crack formation. In order to better understand the evolution/yielding process of stress field,a 3 D finite-element thermo-mechanical model was established for the laser cladding formation of thin wall with the 17-4 PH powder on the FV520( B) steel. The temperature field was firstly analyzed,based on which the stress field and strain field of the laser cladding forming process were analyzed.In order to validate the prediction,the final residual stress field in the obtained thin wall was tested by X-ray diffraction in comparison with the predicted results.展开更多
An analytical model based on the rigid-plastic finite-element formulation for slightly compressible materials is newly proposed to examine the bonding behavior at the roll gap during clad metal sheets rolling. The int...An analytical model based on the rigid-plastic finite-element formulation for slightly compressible materials is newly proposed to examine the bonding behavior at the roll gap during clad metal sheets rolling. The interfacial elements inserted between the two metals, which are characteristic of the shear-susceptible deformation with the help of the shear factor in the expression of effective strain rate,are used to model the relative slidding at the interface. It is found that the proposed method is applicable to the simulation of clad metal sheets rolling.展开更多
The study of laser-powder cladding process subject to heat transfer, melting and crystallization kinetics has been carried out numerically and experimentally. The Kolmogorov-Avrami equation was applied to describe the...The study of laser-powder cladding process subject to heat transfer, melting and crystallization kinetics has been carried out numerically and experimentally. The Kolmogorov-Avrami equation was applied to describe the kinetics of the phase transitions. Characteristic behavior of temperature and conversion fields has been analyzed. Melt pool dimensions,?clad height dependences on mass feed rate, laser power and scanning velocity have been investigated. It has been demonstrated that the melt zone has the boundary distinct from the melting isotherm due to the fact that melting occurs with superheating and crystallization takes place at undercooling. The calculated melt pool depth and clad height are in a good agreement with the experimental results.展开更多
The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa c...The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa considering basic wind speed of 25 m/s as per the project specifications. The first part of the paper deals with the cladding work of the canopy that consist of a 4 mm thick aluminium composite panels supported by steel trusses extended from the main structure. Two types of steel trusses were provided, the main truss connected to the space truss, whereas the intermediate truss connected to channels. Both trusses were spaced at 2.5 m centre to centre. These trusses were fabricated at factory and transported to the site for installation. The second part of the paper is related to the curtain wall design having Maximum Mullion spacing of 2 m, considered as worst scenario for the design calculations. The maximum Mullion height was 5.55 m, adopted in the calculations with bottom and top pinned connection. The Technal system was adopted for the design of mullions and transoms. Design was carried out using numerical modeling with CSI SAP2000 for cladding and its supporting structures. The bracket was realized and checked for the corresponding induced forces. All the structural systems were found safe according to different acceptance criterion.展开更多
A theoretical processing map for the laser cladding of Ti-6AI-4V powder on a Ti-6AI-4V substrate was developed. The map was constructed with the aid of a new analytical model for laser cladding, which is detailed in t...A theoretical processing map for the laser cladding of Ti-6AI-4V powder on a Ti-6AI-4V substrate was developed. The map was constructed with the aid of a new analytical model for laser cladding, which is detailed in this paper. The map is a series of loci that relate laser traversing speed with laser power for a given melt pool depth and clad height. Several of the developed parameters were experimentally trialled on Ti-6Al-4V clad on Ti-6Al-4V and produced clads of sound metallurgical quality. These maps would be useful for industrial engineers developing new cladding procedures or the research engineer developing understanding of the fundamental aspects of laser cladding. Additive manufacturing or laser engineered net shaping (LENS) could also use this type of map for the development of process parameters.展开更多
文摘This article introduces an element diffusion behavior model for a titanium/steel explosive clad plate characterized by a typical curved interface during the heat-treatment process. A series of heat-treatment experiments were conducted in the temperature range from 750℃ to 950℃, and the effects of heat-treatment parameters on the microstructural evolution and diffusion behavior were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and electron-probe microanalysis. Carbon atoms within the steel matrix were observed to diffuse toward the titanium matrix and to aggregate at the bonding interface at 850℃ or lower; in contrast, when the temperature exceeded 850℃, the mutual diffusion of Ti and Fe occurred, along with the diffusion of C atoms, resulting in the for- marion of Ti-Fe intermetallics (Fe2Ti/FeTi). The diffusion distances of C, Ti, and Fe atoms increased with increasing heating temperature and/or holding time. On the basis of this diffusion behavior, a novel diffusion model was proposed. This model considers the effects of various factors, including the curvature radius of the curved interface, the diffusion coefficient, the heating temperature, and the holding rime. The experimental results show good agreement with the calculated values. The proposed model could clearly provide a general prediction of the elements' diffusion at both straight and curved interfaces.
基金supported by a great from the Major State Basic Research Development Program of China(No.2011CB013403)the Scientific Research Foundation for Talent,Guizhou University(No.201665)
文摘The residual stress generated in the laser cladding could lead to undesirable distortions or even crack formation. In order to better understand the evolution/yielding process of stress field,a 3 D finite-element thermo-mechanical model was established for the laser cladding formation of thin wall with the 17-4 PH powder on the FV520( B) steel. The temperature field was firstly analyzed,based on which the stress field and strain field of the laser cladding forming process were analyzed.In order to validate the prediction,the final residual stress field in the obtained thin wall was tested by X-ray diffraction in comparison with the predicted results.
文摘An analytical model based on the rigid-plastic finite-element formulation for slightly compressible materials is newly proposed to examine the bonding behavior at the roll gap during clad metal sheets rolling. The interfacial elements inserted between the two metals, which are characteristic of the shear-susceptible deformation with the help of the shear factor in the expression of effective strain rate,are used to model the relative slidding at the interface. It is found that the proposed method is applicable to the simulation of clad metal sheets rolling.
文摘The study of laser-powder cladding process subject to heat transfer, melting and crystallization kinetics has been carried out numerically and experimentally. The Kolmogorov-Avrami equation was applied to describe the kinetics of the phase transitions. Characteristic behavior of temperature and conversion fields has been analyzed. Melt pool dimensions,?clad height dependences on mass feed rate, laser power and scanning velocity have been investigated. It has been demonstrated that the melt zone has the boundary distinct from the melting isotherm due to the fact that melting occurs with superheating and crystallization takes place at undercooling. The calculated melt pool depth and clad height are in a good agreement with the experimental results.
文摘The paper discusses the design, fabrication and the execution of the cladding supported by steel trusses and curtain wall of a sports club. The cladding and the curtain walls were subjected to a wind load of 1.2 Kpa considering basic wind speed of 25 m/s as per the project specifications. The first part of the paper deals with the cladding work of the canopy that consist of a 4 mm thick aluminium composite panels supported by steel trusses extended from the main structure. Two types of steel trusses were provided, the main truss connected to the space truss, whereas the intermediate truss connected to channels. Both trusses were spaced at 2.5 m centre to centre. These trusses were fabricated at factory and transported to the site for installation. The second part of the paper is related to the curtain wall design having Maximum Mullion spacing of 2 m, considered as worst scenario for the design calculations. The maximum Mullion height was 5.55 m, adopted in the calculations with bottom and top pinned connection. The Technal system was adopted for the design of mullions and transoms. Design was carried out using numerical modeling with CSI SAP2000 for cladding and its supporting structures. The bracket was realized and checked for the corresponding induced forces. All the structural systems were found safe according to different acceptance criterion.
文摘A theoretical processing map for the laser cladding of Ti-6AI-4V powder on a Ti-6AI-4V substrate was developed. The map was constructed with the aid of a new analytical model for laser cladding, which is detailed in this paper. The map is a series of loci that relate laser traversing speed with laser power for a given melt pool depth and clad height. Several of the developed parameters were experimentally trialled on Ti-6Al-4V clad on Ti-6Al-4V and produced clads of sound metallurgical quality. These maps would be useful for industrial engineers developing new cladding procedures or the research engineer developing understanding of the fundamental aspects of laser cladding. Additive manufacturing or laser engineered net shaping (LENS) could also use this type of map for the development of process parameters.