During heteroepitaxial overlayer growth multiple crystal domains nucleated on a substrate surface compete with each other in such a manner that a domain covered by neighboring ones stops growing.The number density of ...During heteroepitaxial overlayer growth multiple crystal domains nucleated on a substrate surface compete with each other in such a manner that a domain covered by neighboring ones stops growing.The number density of active domains ρ decreases as the height h increases.A simple scaling argument leads to a scaling law of ρ~ h^(-γ) with a coarsening exponent γ=d/z,where d is the dimension of the substrate surface and z the dynamic exponent of a growth front.This scaling relation is confirmed by performing kinetic Monte Carlo simulations of the ballistic deposition model on a two-dimensional(d=2) surface,even when an isolated deposited particle diffuses on a crystal surface.展开更多
Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a...Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a nonattracting closed orbit. Smith<sup class='a-plus-plus'>[3]</sup> considered a three-dimensional irreducible competitive system and showed that an ω-limit set containing no equilibrium must be a closed orbit which has a simple Floquet multiplier λ<1, and may be attracting. In this paper we carry out the qualitative analysis of a class of competitive and cooperative systems, and a generalization of the result of Levine<sup class='a-plus-plus'>[4]</sup> is given. The stability problem of closed orbits raised in [5] and [6] is resolved.展开更多
文摘During heteroepitaxial overlayer growth multiple crystal domains nucleated on a substrate surface compete with each other in such a manner that a domain covered by neighboring ones stops growing.The number density of active domains ρ decreases as the height h increases.A simple scaling argument leads to a scaling law of ρ~ h^(-γ) with a coarsening exponent γ=d/z,where d is the dimension of the substrate surface and z the dynamic exponent of a growth front.This scaling relation is confirmed by performing kinetic Monte Carlo simulations of the ballistic deposition model on a two-dimensional(d=2) surface,even when an isolated deposited particle diffuses on a crystal surface.
文摘Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a nonattracting closed orbit. Smith<sup class='a-plus-plus'>[3]</sup> considered a three-dimensional irreducible competitive system and showed that an ω-limit set containing no equilibrium must be a closed orbit which has a simple Floquet multiplier λ<1, and may be attracting. In this paper we carry out the qualitative analysis of a class of competitive and cooperative systems, and a generalization of the result of Levine<sup class='a-plus-plus'>[4]</sup> is given. The stability problem of closed orbits raised in [5] and [6] is resolved.