期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
Auxiliary Classifier of Generative Adversarial Network for Lung Cancer Diagnosis
1
作者 P.S.Ramapraba P.Epsiba +1 位作者 K.Umapathy E.Sivanantham 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2177-2189,共13页
The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Net... The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach. 展开更多
关键词 Lung cancer generative adversarial network auxiliary classifier image classification system deep learning
下载PDF
An Ordinal Multi-Dimensional Classification(OMDC)for Predictive Maintenance
2
作者 Pelin Yildirim Taser 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1499-1516,共18页
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq... Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners. 展开更多
关键词 Machine learning multi-dimensional classification ordinal classification predictive maintenance
下载PDF
SF-CNN: Deep Text Classification and Retrieval for Text Documents 被引量:2
3
作者 R.Sarasu K.K.Thyagharajan N.R.Shanker 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1799-1813,共15页
Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents... Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms. 展开更多
关键词 SEMANTIC classification convolution neural networks semantic enhancement
下载PDF
Germination Quality Prognosis: Classifying Spectroscopic Images of the Seed Samples 被引量:1
4
作者 Saud S.Alotaibi 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1815-1829,共15页
One of the most critical objectives of precision farming is to assess the germination quality of seeds.Modern models contribute to thisfield primarily through the use of artificial intelligence techniques such as machin... One of the most critical objectives of precision farming is to assess the germination quality of seeds.Modern models contribute to thisfield primarily through the use of artificial intelligence techniques such as machine learning,which present difficulties in feature extraction and optimization,which are critical factors in predicting accuracy with few false alarms,and another significant dif-ficulty is assessing germination quality.Additionally,the majority of these contri-butions make use of benchmark classification methods that are either inept or too complex to train with the supplied features.This manuscript addressed these issues by introducing a novel ensemble classification strategy dubbed“Assessing Germination Quality of Seed Samples(AGQSS)by Adaptive Boosting Ensemble Classification”that learns from quantitative phase features as well as universal features in greyscale spectroscopic images.The experimental inquiry illustrates the significance of the proposed model,which outperformed the currently avail-able models when performance analysis was performed. 展开更多
关键词 Precision farming ensemble classification germination quality machine learning predictive analytics
下载PDF
Deep-BERT:Transfer Learning for Classifying Multilingual Offensive Texts on Social Media 被引量:1
5
作者 Md.Anwar Hussen Wadud M.F.Mridha +2 位作者 Jungpil Shin Kamruddin Nur Aloke Kumar Saha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1775-1791,共17页
Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze ... Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts. 展开更多
关键词 Offensive text classification deep convolutional neural network(DCNN) bidirectional encoder representations from transformers(BERT) natural language processing(NLP)
下载PDF
Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models
6
作者 P.Anantha Prabha G.Suchitra R.Saravanan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3065-3079,共15页
Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe... Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC. 展开更多
关键词 CEPHALOPODS transfer learning lightweight models classification deep learning fish IoT
下载PDF
Optimal Sparse Autoencoder Based Sleep Stage Classification Using Biomedical Signals
7
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Manal Al Faraj Yasir A.M.Eltahir Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1517-1529,共13页
The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification M... The recently developed machine learning(ML)models have the ability to obtain high detection rate using biomedical signals.Therefore,this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography(EEG)Biomedical Signals,named OSAE-SSCEEG technique.The major intention of the OSAE-SSCEEG technique is tofind the sleep stage disorders using the EEG biomedical signals.The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach.Moreover,the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization(SAE-SR)with softmax(SM)approach.Finally,the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm(COA)and it leads to boosted classification efficiency.In order to ensure the enhanced performance of the OSAE-SSCEEG technique,a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG tech-nique over the recent methods. 展开更多
关键词 Biomedical signals EEG sleep stage classification machine learning autoencoder softmax parameter tuning
下载PDF
Optimal Deep Belief Network Enabled Malware Detection and Classification Model
8
作者 P.Pandi Chandran N.Hema Rajini M.Jeyakarthic 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3349-3364,共16页
Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of s... Cybercrime has increased considerably in recent times by creating new methods of stealing,changing,and destroying data in daily lives.Portable Docu-ment Format(PDF)has been traditionally utilized as a popular way of spreading malware.The recent advances of machine learning(ML)and deep learning(DL)models are utilized to detect and classify malware.With this motivation,this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification(MFODBN-MDC)technique.The major intention of the MFODBN-MDC technique is for identifying and classify-ing the presence of malware exist in the PDFs.The proposed MFODBN-MDC method derives a new MFO algorithm for the optimal selection of feature subsets.In addition,Adamax optimizer with the DBN model is used for PDF malware detection and classification.The design of the MFO algorithm to select features and Adamax based hyperparameter tuning for PDF malware detection and classi-fication demonstrates the novelty of the work.For demonstrating the improved outcomes of the MFODBN-MDC model,a wide range of simulations are exe-cuted,and the results are assessed in various aspects.The comparison study high-lighted the enhanced outcomes of the MFODBN-MDC model over the existing techniques with maximum precision,recall,and F1 score of 97.42%,97.33%,and 97.33%,respectively. 展开更多
关键词 PDF malware data classification SECURITY deep learning feature selection metaheuristics
下载PDF
Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification
9
作者 Tariq Mohammed Alqahtani 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1433-1449,共17页
In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.... In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures. 展开更多
关键词 Big data analytics healthcare deep learning image classification biomedical imaging machine learning
下载PDF
Disaster Monitoring of Satellite Image Processing Using Progressive Image Classification
10
作者 Romany F.Mansour Eatedal Alabdulkreem 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1161-1169,共9页
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast... The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%). 展开更多
关键词 CLUSTERING SEGMENTATION progressive image classification algorithm satellite image disaster detection
下载PDF
A Novel Outlier Detection with Feature Selection Enabled Streaming Data Classification
11
作者 R.Rajakumar S.Sathiya Devi 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2101-2116,共16页
Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approach... Due to the advancements in information technologies,massive quantity of data is being produced by social media,smartphones,and sensor devices.The investigation of data stream by the use of machine learning(ML)approaches to address regression,prediction,and classification problems have received consid-erable interest.At the same time,the detection of anomalies or outliers and feature selection(FS)processes becomes important.This study develops an outlier detec-tion with feature selection technique for streaming data classification,named ODFST-SDC technique.Initially,streaming data is pre-processed in two ways namely categorical encoding and null value removal.In addition,Local Correla-tion Integral(LOCI)is used which is significant in the detection and removal of outliers.Besides,red deer algorithm(RDA)based FS approach is employed to derive an optimal subset of features.Finally,kernel extreme learning machine(KELM)classifier is used for streaming data classification.The design of LOCI based outlier detection and RDA based FS shows the novelty of the work.In order to assess the classification outcomes of the ODFST-SDC technique,a series of simulations were performed using three benchmark datasets.The experimental results reported the promising outcomes of the ODFST-SDC technique over the recent approaches. 展开更多
关键词 Streaming data classification outlier removal feature selection machine learning metaheuristics
下载PDF
Chi-Square and PCA Based Feature Selection for Diabetes Detection with Ensemble Classifier
12
作者 Vaibhav Rupapara Furqan Rustam +2 位作者 Abid Ishaq Ernesto Lee Imran Ashraf 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1931-1949,共19页
Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the dise... Diabetes mellitus is a metabolic disease that is ranked among the top 10 causes of death by the world health organization.During the last few years,an alarming increase is observed worldwide with a 70%rise in the disease since 2000 and an 80%rise in male deaths.If untreated,it results in complications of many vital organs of the human body which may lead to fatality.Early detection of diabetes is a task of significant importance to start timely treatment.This study introduces a methodology for the classification of diabetic and normal people using an ensemble machine learning model and feature fusion of Chi-square and principal component analysis.An ensemble model,logistic tree classifier(LTC),is proposed which incorporates logistic regression and extra tree classifier through a soft voting mechanism.Experiments are also performed using several well-known machine learning algorithms to analyze their performance including logistic regression,extra tree classifier,AdaBoost,Gaussian naive Bayes,decision tree,random forest,and k nearest neighbor.In addition,several experiments are carried out using principal component analysis(PCA)and Chi-square(Chi-2)fea-tures to analyze the influence of feature selection on the performance of machine learning classifiers.Results indicate that Chi-2 features show high performance than both PCA features and original features.However,the highest accuracy is obtained when the proposed ensemble model LTC is used with the proposed fea-ture fusion framework-work which achieves a 0.85 accuracy score which is the highest of the available approaches for diabetes prediction.In addition,the statis-tical T-test proves the statistical significance of the proposed approach over other approaches. 展开更多
关键词 Diabetes mellitus prediction feature fusion ensemble classifier principal component analysis CHI-SQUARE
下载PDF
An Intelligent Deep Neural Sentiment Classification Network
13
作者 Umamaheswari Ramalingam Senthil Kumar Murugesan +1 位作者 Karthikeyan Lakshmanan Chidhambararajan Balasubramaniyan 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1733-1744,共12页
A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main go... A Deep Neural Sentiment Classification Network(DNSCN)is devel-oped in this work to classify the Twitter data unambiguously.It attempts to extract the negative and positive sentiments in the Twitter database.The main goal of the system is tofind the sentiment behavior of tweets with minimum ambiguity.A well-defined neural network extracts deep features from the tweets automatically.Before extracting features deeper and deeper,the text in each tweet is represented by Bag-of-Words(BoW)and Word Embeddings(WE)models.The effectiveness of DNSCN architecture is analyzed using Twitter-Sanders-Apple2(TSA2),Twit-ter-Sanders-Apple3(TSA3),and Twitter-DataSet(TDS).TSA2 and TDS consist of positive and negative tweets,whereas TSA3 has neutral tweets also.Thus,the proposed DNSCN acts as a binary classifier for TSA2 and TDS databases and a multiclass classifier for TSA3.The performances of DNSCN architecture are evaluated by F1 score,precision,and recall rates using 5-fold and 10-fold cross-validation.Results show that the DNSCN-WE model provides more accuracy than the DNSCN-BoW model for representing the tweets in the feature encoding.The F1 score of the DNSCN-BW based system on the TSA2 database is 0.98(binary classification)and 0.97(three-class classification)for the TSA3 database.This system provides better a F1 score of 0.99 for the TDS database. 展开更多
关键词 Deep neural network word embeddings BAG-OF-WORDS sentiment analysis text classification
下载PDF
Multi-Level Deep Generative Adversarial Networks for Brain Tumor Classification on Magnetic Resonance Images
14
作者 Abdullah A.Asiri Ahmad Shaf +7 位作者 Tariq Ali Muhammad Aamir Ali Usman Muhammad Irfan Hassan A.Alshamrani Khlood M.Mehdar Osama M.Alshehri Samar M.Alqhtani 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期127-143,共17页
The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisi... The brain tumor is an abnormal and hysterical growth of brain tissues,and the leading cause of death affected patients worldwide.Even in this technol-ogy-based arena,brain tumor images with proper labeling and acquisition still have a problem with the accurate and reliable generation of realistic images of brain tumors that are completely different from the original ones.The artificially created medical image data would help improve the learning ability of physicians and other computer-aided systems for the generation of augmented data.To over-come the highlighted issue,a Generative Adversarial Network(GAN)deep learn-ing technique in which two neural networks compete to become more accurate in creating artificially realistic data for MRI images.The GAN network contains mainly two parts known as generator and discriminator.Commonly,a generator is the convolutional neural network,and a discriminator is the deconvolutional neural network.In this research,the publicly accessible Contrast-Enhanced Mag-netic Resonance Imaging(CE-MRI)dataset collected from 2005-to 2020 from different hospitals in China consists of four classes has been used.Our proposed method is simple and achieved an accuracy of 96%.We compare our technique results with the existing results,indicating that our proposed technique outper-forms the best results associated with the existing methods. 展开更多
关键词 GAN network CE-MRI images convolutional neural network brain tumor classification
下载PDF
A Deep Trash Classification Model on Raspberry Pi 4
15
作者 Thien Khai Tran Kha Tu Huynh +2 位作者 Dac-Nhuong Le Muhammad Arif Hoa Minh Dinh 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2479-2491,共13页
Environmental pollution has had substantial impacts on human life,and trash is one of the main sources of such pollution in most countries.Trash classi-fication from a collection of trash images can limit the overloadi... Environmental pollution has had substantial impacts on human life,and trash is one of the main sources of such pollution in most countries.Trash classi-fication from a collection of trash images can limit the overloading of garbage dis-posal systems and efficiently promote recycling activities;thus,development of such a classification system is topical and urgent.This paper proposed an effective trash classification system that relies on a classification module embedded in a hard-ware setup to classify trash in real time.An image dataset isfirst augmented to enhance the images before classifying them as either inorganic or organic trash.The deep learning–based ResNet-50 model,an improved version of the ResNet model,is used to classify trash from the dataset of trash images.The experimental results,which are tested both on the dataset and in real time,show that ResNet-50 had an average accuracy of 96%,higher than that of related models.Moreover,integrating the classification module into a Raspberry Pi computer,which con-trolled the trash bin slide so that garbage fell into the appropriate bin for inorganic or organic waste,created a complete trash classification system.This proves the efficiency and high applicability of the proposed system. 展开更多
关键词 Trash classification ResNet raspberry pi internet of things(IoT) deep learning
下载PDF
Classifying Hematoxylin and Eosin Images Using a Super-Resolution Segmentor and a Deep Ensemble Classifier
16
作者 P.Sabitha G.Meeragandhi 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1983-2000,共18页
Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for exper... Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for experienced pathologists,due to the non-uniform illumination and artifacts.Albeit several Machine Learning(ML)and Deep Learning(DL)approaches are employed to increase the performance of automatic liver cancer diagnostic systems,the classi-fication accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations.In this work,we present a new Ensemble Classifier(hereafter called ECNet)to classify the H&E stained liver histopathology images effectively.The proposed model employs a Dropout Extreme Learning Machine(DrpXLM)and the Enhanced Convolutional Block Attention Modules(ECBAM)based residual network.ECNet applies Voting Mechanism(VM)to integrate the decisions of individual classifiers using the average of probabilities rule.Initially,the nuclei regions in the H&E stain are seg-mented through Super-resolution Convolutional Networks(SrCN),and then these regions are fed into the ensemble DL network for classification.The effectiveness of the proposed model is carefully studied on real-world datasets.The results of our meticulous experiments on the Kasturba Medical College(KMC)liver dataset reveal that the proposed ECNet significantly outperforms other existing classifica-tion networks with better accuracy,sensitivity,specificity,precision,and Jaccard Similarity Score(JSS)of 96.5%,99.4%,89.7%,95.7%,and 95.2%,respectively.We obtain similar results from ECNet when applied to The Cancer Genome Atlas Liver Hepatocellular Carcinoma(TCGA-LIHC)dataset regarding accuracy(96.3%),sensitivity(97.5%),specificity(93.2%),precision(97.5%),and JSS(95.1%).More importantly,the proposed ECNet system consumes only 12.22 s for training and 1.24 s for testing.Also,we carry out the Wilcoxon statistical test to determine whether the ECNet provides a considerable improvement with respect to evaluation metrics or not.From extensive empirical analysis,we can conclude that our ECNet is the better liver cancer diagnostic model related to state-of-the-art classifiers. 展开更多
关键词 Convolutional block attention modules dropout ELM ensemble classifier liver cancer segmentation voting mechanism
下载PDF
An Automatic Deep Neural Network Model for Fingerprint Classification
17
作者 Amira Tarek Mahmoud Wael AAwad +4 位作者 Gamal Behery Mohamed Abouhawwash Mehedi Masud Hanan Aljuaid Ahmed Ismail Ebada 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2007-2023,共17页
The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achiev... The accuracy offingerprint recognition model is extremely important due to its usage in forensic and securityfields.Anyfingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy.To solve this problem in a unified model,this paper proposes a model that can automatically specify itself.So,it is called an automatic deep neural net-work(ADNN).Our algorithm can specify the appropriate architecture of the neur-al network used and some significant parameters of this network.These parameters are the number offilters,epochs,and iterations.It guarantees the high-est accuracy by updating itself until achieving 99%accuracy then it stops and out-puts the result.Moreover,this paper proposes an end-to-end methodology for recognizing a person’s identity from the inputfingerprint image based on a resi-dual convolutional neural network.It is a complete system and is fully automated whether in the features extraction stage or the classification stage.Our goal is to automate thisfingerprint recognition system because the more automatic the sys-tem is,the more time and effort it saves.Our model also allows users to react by inputting the initial values of these parameters.Then,the model updates itself until itfinds the optimal values for the parameters and achieves the best accuracy.Another advantage of our algorithm is that it can recognize people from their thumb and otherfingers and its ability to recognize distorted samples.Our algo-rithm achieved 99.75%accuracy on the publicfingerprint dataset(SOCOFing).This is the best accuracy compared with other models. 展开更多
关键词 Automatic system fingerprint classification residual networks deep learning
下载PDF
Deep LearningModel for Big Data Classification in Apache Spark Environment
18
作者 T.M.Nithya R.Umanesan +2 位作者 T.Kalavathidevi C.Selvarathi A.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2537-2547,共11页
Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better p... Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique. 展开更多
关键词 Big data apache spark classification feature selection gated recurrent unit adam optimizer
下载PDF
Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification
19
作者 B.Chellapraba D.Manohari +1 位作者 K.Periyakaruppan M.S.Kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2353-2366,共14页
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is importa... Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches. 展开更多
关键词 Hyperspectral images image classification deep learning adagrad optimizer nasnetlarge model red deer algorithm
下载PDF
Prediction of Suitable Crops Using Stacked Scaling Conjugant Neural Classifier
20
作者 P.Nithya A.M.Kalpana 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3743-3755,共13页
Agriculture plays a vital role in economic development.The major pro-blem faced by the farmers are the selection of suitable crops based on environ-mental conditions such as weather,soil nutrients,etc.The farmers were... Agriculture plays a vital role in economic development.The major pro-blem faced by the farmers are the selection of suitable crops based on environ-mental conditions such as weather,soil nutrients,etc.The farmers were following ancestral patterns,which could sometimes lead to the wrong selection of crops.In this research work,the feature selection method is adopted to improve the performance of the classification.The most relevant features from the dataset are obtained using a Probabilistic Feature Selection(PFS)approach,and classifi-cation is done using a Neural Fuzzy Classifier(NFC).Scaling Conjugate Gradient(SCG)optimization method is used to update the weights.The data set used for analysis contain various parameters such as soil characteristics,geographical loca-tion,and environmental factors such as temperature and rainfall.The proposed method recommends suitable crops for cultivation based on site-specific para-meters.Experimental result shows that the proposed method provides high accu-racy and efficiency as compared to existing methodologies. 展开更多
关键词 Feature selection neural fuzzy classifier optimization crop recommendation
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部