We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of t...We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.展开更多
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics...The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.展开更多
We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the vacuum s...We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the vacuum state. Generally, the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling strength of the two-level atoms to the thermal fields. However, we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.展开更多
A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is gre...A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.展开更多
We investigate the quantum coherence and quantum entanglement dynamics of a classical driven single atom coupled to a single-mode cavity. It is shown that the transformation between the atomic coherence and the atom-f...We investigate the quantum coherence and quantum entanglement dynamics of a classical driven single atom coupled to a single-mode cavity. It is shown that the transformation between the atomic coherence and the atom-field entanglement exists, and can be improved by adjusting the classical driving field. The joint evolution of two identical single-body systems is also studied. The results show the quantum coherence transfers among composite subsystems, and the coherence conservation of composite subsystems is obtained. Moreover, the classical driving field can be used to suppress the decay of the coherence and entanglement, owing to considering the leaky cavity. The non-Markovian dynamics of the system is also discussed finally.展开更多
We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniqu...We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniques. In the two schemes, teleportation and distillation procedures can be realized simultaneously. The second teleportation scheme is more advantageous than the first one.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 10774143)
文摘We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115,11204156,11574178,11304179,and 11647172)the Science and Technology Plan Projects of Shandong University,China(Grant No.J16LJ52)
文摘The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.
基金supported by the National Natural Science Foundation of China (Nos. 11065007 and 11047115)the Scientific Research Foundation of Jiangxi Provincial Department of Education (Nos. GJJ10135 and GJJ09504)the Foundation of Talent of Jinggang of Jiangxi Province (No. 2008DQ00400)
文摘We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the vacuum state. Generally, the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling strength of the two-level atoms to the thermal fields. However, we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.
基金The project supported by the Natural Science Foundation of Education Committee of Fujian Province of China under Grant No. JB03047.
文摘A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.
基金supported by the National Natural Science Foundation of China(Grant Nos.61675115,11204156,11574178,and 11304179)the Science and Technology Plan Projects of Shandong University,China(Grant No.J16LJ52)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016AP09)
文摘We investigate the quantum coherence and quantum entanglement dynamics of a classical driven single atom coupled to a single-mode cavity. It is shown that the transformation between the atomic coherence and the atom-field entanglement exists, and can be improved by adjusting the classical driving field. The joint evolution of two identical single-body systems is also studied. The results show the quantum coherence transfers among composite subsystems, and the coherence conservation of composite subsystems is obtained. Moreover, the classical driving field can be used to suppress the decay of the coherence and entanglement, owing to considering the leaky cavity. The non-Markovian dynamics of the system is also discussed finally.
文摘We propose two physical schemes, which can teleport unknown atomic entangled states from user A (Alice) to user B (Bob) via GHZ class states as quantum channel The two schemes are both based on cavity QED techniques. In the two schemes, teleportation and distillation procedures can be realized simultaneously. The second teleportation scheme is more advantageous than the first one.