Quasi-classical trajectory (QCT) calculations on the H^++H2 reaction system were carried out on a new potential energy surface (PES). Theoretical calculations show that the angular distribution of the forward an...Quasi-classical trajectory (QCT) calculations on the H^++H2 reaction system were carried out on a new potential energy surface (PES). Theoretical calculations show that the angular distribution of the forward and backward products is roughly symmetric for the title reaction. The product rotational state distribution was also determined at a few collision energies. In t, he collision energy range from 0.124 eV to 1.424 eV, the integral cross section for this system monotonically decreases with the collision energy. A comparison with the experimental result of the ion-molecule reaction was also made, the agreement is generally good.展开更多
Lorentz ionization of H(1s) is investigated by classical trajectory Monte Carlo (CTMC) simulation. The effect of the transverse magnetic field on the considered process is analyzed in terms of the time evolution o...Lorentz ionization of H(1s) is investigated by classical trajectory Monte Carlo (CTMC) simulation. The effect of the transverse magnetic field on the considered process is analyzed in terms of the time evolution of interactions in the system, total electron energy, and electron trajectories. A classical mechanism for the ionization is found, where the variation of the kinetic energy of the nuclei is found to be important in the process. Compared with the results of tunneling ionization, the classical mechanism becomes more and more important with the increase of the velocity of the H-atom or the strength of the magnetic field.展开更多
We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of...We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.展开更多
We use a semiclassical approximation to study the transport through the weakly open chaotic Sinai quantum billiards which can be considered as the schematic of a Sinai mesoscopic device,with the diffractive scattering...We use a semiclassical approximation to study the transport through the weakly open chaotic Sinai quantum billiards which can be considered as the schematic of a Sinai mesoscopic device,with the diffractive scatterings at the lead openings taken into account.The conductance of the ballistic microstructure which displays universal fluctuations due to quantum interference of electrons can be calculated by Landauer formula as a function of the electron Fermi wave number,and the transmission amplitude can be expressed as the sum over all classical paths connecting the entrance and the exit leads.For the Sinai billiards,the path sum leads to an excellent numerical agreement between the peak positions of power spectrum of the transmission amplitude and the corresponding lengths of the classical trajectories,which demonstrates a good agreement between the quantum theory and the semiclassical theory.展开更多
We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V ...We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.展开更多
In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model m...In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.展开更多
The effects of isotope substitution on stereodynamic properties for the reactions C^+ + H_2/HD/HT →CH^+ + H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state CH_2^+ ...The effects of isotope substitution on stereodynamic properties for the reactions C^+ + H_2/HD/HT →CH^+ + H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state CH_2^+ potential energy surface [J. Chem. Phys. 142(2015) 124302]. In the center of mass coordinates applying the quasi classical trajectory method to investigate the orientation and the alignment of the product molecule. Differential cross section and three angle distribution functions P(θ_r), P(ф_r), P(θ_r, ф_r) on the potential energy surface that fixed the collision energy with a value is 40 kcal/mol have been studied. The isotope effect becomes more and more important with the reagent molecules H_2 changing into HD and HT. P(θ_r, ф_r) as the joint probability density function of both polar angles θ_r and ф_r, which can illustrate more detailed dynamics information. The isotope effect is obvious influence on the properties of stereodynamics in the reactions of C^+ + H_2/HD/HT → CH^+ + H/D/T.展开更多
基金Ⅴ. ACKN0WLEDGEMENTS This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China (No.20328304, No.10574068, No.20533060 and No.20525313).
文摘Quasi-classical trajectory (QCT) calculations on the H^++H2 reaction system were carried out on a new potential energy surface (PES). Theoretical calculations show that the angular distribution of the forward and backward products is roughly symmetric for the title reaction. The product rotational state distribution was also determined at a few collision energies. In t, he collision energy range from 0.124 eV to 1.424 eV, the integral cross section for this system monotonically decreases with the collision energy. A comparison with the experimental result of the ion-molecule reaction was also made, the agreement is generally good.
基金the National Natural Science Foundation of China(Grant Nos.11025417,10974021,10979007,and 11104017)
文摘Lorentz ionization of H(1s) is investigated by classical trajectory Monte Carlo (CTMC) simulation. The effect of the transverse magnetic field on the considered process is analyzed in terms of the time evolution of interactions in the system, total electron energy, and electron trajectories. A classical mechanism for the ionization is found, where the variation of the kinetic energy of the nuclei is found to be important in the process. Compared with the results of tunneling ionization, the classical mechanism becomes more and more important with the increase of the velocity of the H-atom or the strength of the magnetic field.
基金supported by the National Basic Research Program of China (Grant No. 2010CB923102)the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807)the National Natural Science Foundation of China (Grant No. 11074199)
文摘We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10804064 and 10774093)
文摘We use a semiclassical approximation to study the transport through the weakly open chaotic Sinai quantum billiards which can be considered as the schematic of a Sinai mesoscopic device,with the diffractive scatterings at the lead openings taken into account.The conductance of the ballistic microstructure which displays universal fluctuations due to quantum interference of electrons can be calculated by Landauer formula as a function of the electron Fermi wave number,and the transmission amplitude can be expressed as the sum over all classical paths connecting the entrance and the exit leads.For the Sinai billiards,the path sum leads to an excellent numerical agreement between the peak positions of power spectrum of the transmission amplitude and the corresponding lengths of the classical trajectories,which demonstrates a good agreement between the quantum theory and the semiclassical theory.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174034, 12047510, and 11822401)NSAF (Grant Nos. U1930402 and U1930403)。
文摘We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.
基金supported in part by the National Natural Science Foundation of China(#10574057,#10571074,and#10171039)by the Specialized Research Fund for the Doctoral Program of Higher Education(#20050183010).
文摘In this paper we survey recent progress in symplectic algorithms for use in quantum systems in the following topics:Symplectic schemes for solving Hamiltonian systems;Classical trajectories of diatomic systems,model molecule A2B,Hydrogen ion H+2 and elementary atmospheric reaction N(4S)+O2(X 3Σ−g)→NO(X 2Π)+O(3P)calculated by means of Runge-Kutta methods and symplectic methods;the classical dissociation of the HF molecule and classical dynamics of H+2 in an intense laser field;the symplectic form and symplectic-scheme shooting method for the time-independent Schr¨odinger equation;the computation of continuum eigenfunction of the Schr¨odinger equation;asymptotic boundary conditions for solving the time-dependent Schr¨odinger equation of an atom in an intense laser field;symplectic discretization based on asymptotic boundary condition and the numerical eigenfunction expansion;and applications in computing multi-photon ionization,above-threshold ionization,Rabbi oscillation and high-order harmonic generation of laser-atom interaction.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11474141,11274149,11544015the Program for Liaoning Excellent Talents in University under Grant No.LJQ2015040the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(2014-1685)
文摘The effects of isotope substitution on stereodynamic properties for the reactions C^+ + H_2/HD/HT →CH^+ + H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state CH_2^+ potential energy surface [J. Chem. Phys. 142(2015) 124302]. In the center of mass coordinates applying the quasi classical trajectory method to investigate the orientation and the alignment of the product molecule. Differential cross section and three angle distribution functions P(θ_r), P(ф_r), P(θ_r, ф_r) on the potential energy surface that fixed the collision energy with a value is 40 kcal/mol have been studied. The isotope effect becomes more and more important with the reagent molecules H_2 changing into HD and HT. P(θ_r, ф_r) as the joint probability density function of both polar angles θ_r and ф_r, which can illustrate more detailed dynamics information. The isotope effect is obvious influence on the properties of stereodynamics in the reactions of C^+ + H_2/HD/HT → CH^+ + H/D/T.