期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Hydrogen diffusion in C′_(1) phase clathrate hydrate
1
作者 宋姿璇 周子岳 +5 位作者 林演文 石桥 郝勇超 付越群 张志森 吴建洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期52-59,共8页
Recently,a new phase C'_(1) H_(2) hydrate was experimentally identified.In this work,the diffusive behaviors of H_(2) in C'_(1)phase clathrate hydrate are explored using classic molecular dynamics(MD)simulatio... Recently,a new phase C'_(1) H_(2) hydrate was experimentally identified.In this work,the diffusive behaviors of H_(2) in C'_(1)phase clathrate hydrate are explored using classic molecular dynamics(MD)simulations.It reveals that the cage occupancy by H_(2) molecule negligibly influences the C'_(1) phase clathrate structure but greatly dictates the diffusion coefficient of H_(2)molecule.Due to the small cage size and small windows connecting the neighboring cages in C'_(1) phase clathrate,nonoccupancy of the neighboring cages is demanded to enable the diffusion of H_(2) molecule that is primarily dominated by hopping mechanism.Moreover,the analysis of diffusive free energy landscape reveals lower energy barrier of H_(2) molecule in C'_(1) phase clathrate hydrate than that of other gases in conventional clathrate hydrates,and that H_(2) molecule travels through the windows between neighboring cages with preferential molecular orientation.This study provides critical physical insights into the diffusion behaviors of H_(2) in the C'_(1) phase clathrate hydrate,and implies that the C'_(1) clathrate hydrate is a promising solid structure for the next-generation H_(2) storage. 展开更多
关键词 clathrate hydrate hydrogen storage DIFFUSION molecular dynamics
下载PDF
THERMAL CONDUCTIVITY OF THF CLATHRATE HYDRATE FROM 243 K TO 263 K 被引量:5
2
作者 HUANG Duzi~(1,2) and FAN Shuanshi~1(~1Center for Gas Hydrate, Guangzhou Institute of Energy Conversion, CAS, Guangzhou, 510070, Guangdong, China ~2 Department of Thermal Science & Energy Engineering, USTC, Hefei, 230036, Anhui, China) 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期71-75,共5页
Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of ... Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing. 展开更多
关键词 THF in or IT THERMAL CONDUCTIVITY OF THF clathrate hydrate FROM 243 K TO 263 K of that
下载PDF
Intensification of methane and hydrogen storage inclathrate hydrate and future prospect 被引量:5
3
作者 Xuemei Lang Shuanshi Fan YanhongWang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期203-209,共7页
Gas hydrate is a new technology for energy gas(methane/hydrogen)storage due to its large capacity of gas storage and safe.But industrial application of hydrate storage process was hindered by someproblems.For methan... Gas hydrate is a new technology for energy gas(methane/hydrogen)storage due to its large capacity of gas storage and safe.But industrial application of hydrate storage process was hindered by someproblems.For methane,the main problems are low formation rateand storage capacity,which can be solved by strengthening mass andheat transfer,such as adding additives,stirring,bubbling,etc.Onekind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate,and the other kind of additivesis surfactant,which can form micelle with water and increase the interface of water-gas.Dry water has the similar effects on the methanehydrate as surfactant.Additionally,stirring,bubbling,and sprayingcan increase formation rate and storage capacity due to mass transferstrengthened.Inserting internal or external heat exchange also canimprove formation rate because of good heat transfer.For hydrogen,the main difficulties are very high pressure for hydrate formed.Tetrahydrofuran(THF),tetrabutylammonium bromide(TBAB) andtetrabutylammonium fluoride(TBAF) have been proved to be able todecrease the hydrogen hydrate formation pressure significantly. 展开更多
关键词 clathrate hydrate METHANE HYDROGEN formation rate storage capacity
下载PDF
Accelerated methane storage in clathrate hydrates using surfactantstabilized suspension with graphite nanoparticles 被引量:4
4
作者 Liang Yang Xin Wang +4 位作者 Daoping Liu Guomin Cui Binlin Dou Juan Wang Shuqing Hao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1112-1119,共8页
In this study,enhanced kinetics of methane hydrate formation in the sodium dodecyl sulfate(SDS)solution with different concentrations of suspended graphite nanoparticles(GNPs)were investigated at 6.1-9.0 MPa and 274.1... In this study,enhanced kinetics of methane hydrate formation in the sodium dodecyl sulfate(SDS)solution with different concentrations of suspended graphite nanoparticles(GNPs)were investigated at 6.1-9.0 MPa and 274.15 K.The GNPs with rough surfaces and excellent thermal conductivity not only provided a considerable number of microsites for hydrate nucleation but also facilitated the fast hydrate heat transfer in the suspension system.At a relatively low pressure of 6.1 MPa,the suspension with 0.4 wt%of GNPs exhibited the minimum induction time of 22 min and maximum methane uptake of 126.1 cm3·cm-3.However,the methane storage performances of the suspensions with higher and lower concentrations of GNPs were not satisfactory.At the applied pressure,the temperature increase arising from the hydrate heat in the suspension system with the optimized concentration(0.4 wt%)of GNPs was more significant than that in the traditional SDS solution.Furthermore,compared with those of the system without GNPs,enhanced hydration rate and storage capacity were achieved in the suspensions with GNPs,and the storage capacities were increased by 3.9%-17.0%.The promotion effect of GNPs on gas hydrate formation at low pressure is much more obvious than that at high pressure. 展开更多
关键词 methane storage clathrate hydrates formation kinetics SUSPENSION graphite nanoparticles
下载PDF
Lattice dynamics study of low energy guest-host coupling in clathrate hydrate 被引量:1
5
作者 杨岳海 董顺乐 王琳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期270-273,共4页
Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15... Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate. 展开更多
关键词 lattice dynamics clathrate hydrate guest-host coupling anticrossing
下载PDF
Tensile properties of structural I clathrate hydrates:Role of guest-host hydrogen bonding ability 被引量:2
6
作者 Yue Xin Qiao Shi +2 位作者 Ke Xu Zhi-Sen Zhang Jian-Yang Wu 《Frontiers of physics》 SCIE CSCD 2021年第3期125-134,共10页
Clathrate hydrates(CHs)are one of the most promising molecular structures in applications of gas capture and storage,and gas separations.Fundamental knowledge of mechanical characteristics of CHs is of crucial importa... Clathrate hydrates(CHs)are one of the most promising molecular structures in applications of gas capture and storage,and gas separations.Fundamental knowledge of mechanical characteristics of CHs is of crucial importance for assessing gas storage and separations at cold conditions,as well as understanding their stability and formation mechanisms.Here,the tensile mechanical properties of structural I CHs encapsulating a variety of guest species(CH_(4),NH_(3),H_(2)S,CH_(2)O,CH_(3)OH,and CH_(3)SH)that have different abilities to form hydrogen(H-)bonds with water molecule are explored by classical molecular dynamics(MD)simulations.All investigated CHs are structurally stable clathrate structures.Basic mechanical properties of CHs including tensile limit and Young’s modulus are dominated by the H-bonding ability of host-guest molecules and the guest molecular polarity.CHs containing small CH_(4),CH_(2)O and H_(2)S guest molecules that possess weak H-bonding ability are mechanically robust clathrate structures and mechanically destabilized via brittle failure on the(101)plane.However,those entrapping CH3SH,CH3OH,and NH3 that have strong H-bonding ability are mechanically weak molecular structures and mechanically destabilized through ductile failure as a result of gradual global dissociation of clathrate cages. 展开更多
关键词 mechanical properties clathrate hydrates hydrogen bonding
原文传递
Fracture mechanics of methane clathrate hydrates 被引量:1
7
作者 Jinjie Liu Ke Xu +5 位作者 Li Yang Yanwen Lin Tong Li Xuezheng Gao Zhisen Zhang Jianyang Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第9期1387-1394,I0002,共9页
Fundamental mechanics of gas hydrates is of importance to evaluating geomechanical and geotechnical properties of gas hydrate deposits,but it remains largely unexplored yet due to insufficient direct experimental tech... Fundamental mechanics of gas hydrates is of importance to evaluating geomechanical and geotechnical properties of gas hydrate deposits,but it remains largely unexplored yet due to insufficient direct experimental techniques and high-quality of gas hydrate samples.Here,classic molecular dynamic(MD)simulations are used to study the fracture mechanics of three main methane clathrate hydrates of sI,sII and sH types.The results show that the mechanical properties of those three methane clathrate hydrates are intrinsically different and are degraded by the presence of nanocracks.They show brittle facture and different fracture toughness.In terms of energy release rate,they are ranked as sH>sI>sII.Moreover,the three methane clathrate hydrates with nanocracks can be explained by a modified Griffith criterion.Moreover,it is intriguingly identified tip amorphization during the crack propagation process of the three methane clathrate hydrates,and sH methane clathrate hydrate with specific nanocrack exhibits slower crack propagation than other two methane clathrate hydrates. 展开更多
关键词 Methane clathrate hydrates Young’s modulus Fracture toughness Griffith criterion Molecular dynamics
原文传递
Hydrate capture CO_2 from shifted synthesis gas, flue gas and sour natural gas or biogas 被引量:10
8
作者 Yanhong Wang Xuemei Lang Shuanshi Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期39-47,共9页
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for C... CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas. 展开更多
关键词 clathrate hydrate C02 capture hydrogen shifted synthesis gas flue gas sour natural gas or biogas
下载PDF
Insights into kinetic inhibition effects of MEG,PVP,and L-tyrosine aqueous solutions on natural gas hydrate formation 被引量:5
9
作者 Amir Saberi Abdolmohammad Alamdari +1 位作者 Ali Rasoolzadeh Amir H.Mohammadi 《Petroleum Science》 SCIE CAS CSCD 2021年第2期495-508,共14页
It is necessary to understand all the prerequisites, which result in gas hydrate formation for safe design and control of a variety of processes in petroleum industry. Thermodynamic hydrate inhibitors (THIs) are norma... It is necessary to understand all the prerequisites, which result in gas hydrate formation for safe design and control of a variety of processes in petroleum industry. Thermodynamic hydrate inhibitors (THIs) are normally used to preclude gas hydrate formation by shifting hydrate stability region to lower temperatures and higher pressures. Sometimes, it is difficult to avoid hydrate formation and hydrates will form anyway. In this situation, kinetic hydrate inhibitors (KHIs) can be used to postpone formation of gas hydrates by retarding hydrate nucleation and growth rate. In this study, two kinetic parameters including natural gas hydrate formation induction time and the rate of gas consumption were experimentally investigated in the presence of monoethylene glycol (MEG), L-tyrosine, and polyvinylpyrrolidone (PVP) at various concentrations in aqueous solutions. Since hydrate formation is a stochastic phenomenon, the repeatability of each kinetic parameter was evaluated several times and the average values for the hydrate formation induction times and the rates of gas consumption are reported. The results indicate that from the view point of hydrate formation induction time, 2 wt% PVP and 20 wt% MEG aqueous solutions have the highest values and are the best choices. It is also interpreted from the results that from the view point of the rate of gas consumption, 20 wt% MEG aqueous solution yields the lowest value and is the best choice. Finally, it is concluded that the combination of PVP and MEG in an aqueous solution has a simultaneous synergistic impact on natural gas hydrate formation induction time and the rate of gas consumption. Furthermore, a semi-empirical model based on chemical kinetic theory is applied to evaluate the hydrate formation induction time data. A good agreement between the experimental and calculated hydrate formation induction time data is observed. 展开更多
关键词 Gas hydrate clathrate hydrate Natural gas Kinetic hydrate inhibitor(KHI) Induction time Kinetics
下载PDF
Kinetic hydrate inhibitor performance of new copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s with TBAB 被引量:8
10
作者 Jun Hu Sijia Li +3 位作者 Yanhong Wang Xuemei Lang Qingping Li Shuanshi Fan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期126-131,共6页
In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the c... In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the combined use of KHIs and some synergists, which would enhance KHIs’ inhibitory effect on both hydrate nucleation and hydrate crystal growth. In this study, a novel kind of KHI copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s (HGs) is used in conjunction with TBAB to show its high performance on hydrate inhibition. The performance of HGs with different monomer ratios in structure II tetrahydrofuran (THF) hydrate is investigated using kinetic hydrate inhibitor evaluation apparatus by step-cooling method and isothermal cooling method. With the combined gas hydrate inhibitor at the concentration of 1.0 wt%, the induction time of 19 wt% THF solution could be prolonged to 8.5 h at a high subcooling of 6℃. Finally, the mechanism of HGs inhibiting the formation of gas hydrate is proposed. 展开更多
关键词 clathrate hydrate kinetic hydrate inhibitors combined hydrate inhibitors poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)
下载PDF
Experimental study of hydrogen sulfide hydrate formation: Induction time in the presence and absence of kinetic inhibitor 被引量:4
11
作者 Yousef Salamat Abdolreza Moghadassi +2 位作者 Mohammad Illbeigi Ali Eslamimanesh Amir H. Mohammadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期114-118,共5页
In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is ... In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is studied. A novel method namely "sudden cooling" is used for performing the relevant measurements, in which the induction time of H2S hydrate in the presence/absence of PVP and L-tyrosine with different concentrations (100, 500, and 1000 ppm) is determined. As a result, PVP with the concentration of 1000 ppm in aqueous solution is detected as a more suitable material for increasing the induction time of H2S hydrate formation among the investigated kinetic hydrate inhibitors. 展开更多
关键词 hy^ogen sulfide gas hydrates clathrate hydrates kinetic inhibitor induction time sudden cooling
下载PDF
A review of the gas hydrate phase transition with a microfluidic approach
12
作者 Qingbin Liu Yingying Liu +5 位作者 Jintao Xu Ying Teng Zheng Ling Yi Zhang Lanlan Jiang Yongchen Song 《Energy Reviews》 2023年第1期1-15,共15页
Over the years,natural gas hydrates(NGHs)have attracted significant attention as an emerging energy resource.Microfluidics is a novel technology used to observe the behaviour of NGHs in microchannels directly and has ... Over the years,natural gas hydrates(NGHs)have attracted significant attention as an emerging energy resource.Microfluidics is a novel technology used to observe the behaviour of NGHs in microchannels directly and has been applied to hydrates.Gas hydrate distributions and phase transitions are key parameters for exploitation and application.In this paper,advances in related research with microfluidics-based technology are reviewed,including the hydrate phase transition process and its mechanism of influence.Hydrate formation and decomposition directly influence the efficiency and sustainability of exploitation.In addition,studies of the hydrate phase transition provide basic data for future commercial exploitation.Moreover,extended applications,further developments and potential improvements in microfluidic techniques are also discussed.We believe that with an improved understanding of the hydrate phase transition mechanism,commercial exploitation of hydrates can be expected soon. 展开更多
关键词 clathrate hydrate MICROFLUIDICS MORPHOLOGY EXPERIMENTAL CO_(2)sequestration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部