A fluoroimmunoassay method using unlabeled europium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simple because labeling process...A fluoroimmunoassay method using unlabeled europium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simple because labeling process is omitted.The detection limit is about 10^(10) mol/L antigen.The relative standard deviation of immunoassay is less than 10%.The recoveries of human serum albumin and estradiol protein conjugate are 96-105% and 111% respectively.展开更多
A fluoroimmunoassay method using unlabeled Terbium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simpte because labeling process ...A fluoroimmunoassay method using unlabeled Terbium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simpte because labeling process is unnecessary.The recovery of HSA and albumin in urine is 107% and 95% respectively.The standard deviation is tess than 10%.展开更多
Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface...Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. Th...The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120 ℃ and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence.展开更多
Proton ligand stability constants of hydroxybenzoic acid containing nitro group (2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4- nitrobenzoic acid) were determined through lrving-Rossoti pH titration technique. The s...Proton ligand stability constants of hydroxybenzoic acid containing nitro group (2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4- nitrobenzoic acid) were determined through lrving-Rossoti pH titration technique. The stability constants of rare earth metal chelates containing 2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4-nitrobenzoic acid as ligands were studied in aqueous medium at different ionic strength (p=0.01, 0.05 and 0.1 mol/L) and temperatures (298, 308 and 318± 0.1 K). The values of stability constant were evaluated through different computational methods like successive approximation, least square treatment, correction term method, and convergence method. The observed value of thermodynamic parameters (△G°, △H° and △S°) favors the complex formation between metal and ligands. The order of stabifity constant was found to be Pr(III)〈Nd(III)〈Sm(III)〈Tb(III)〈Ho(III)〈Er(III) as reported by Stagg and Powell.展开更多
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur...The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.展开更多
基金This work was supported by National Natural Science Foundation of China.
文摘A fluoroimmunoassay method using unlabeled europium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simple because labeling process is omitted.The detection limit is about 10^(10) mol/L antigen.The relative standard deviation of immunoassay is less than 10%.The recoveries of human serum albumin and estradiol protein conjugate are 96-105% and 111% respectively.
基金supported by National Commission of Natural Science Foundation of China.
文摘A fluoroimmunoassay method using unlabeled Terbium chelate is described.The principle is similar to that of fluoroimmunoassay method using lanthanide chelate as labels.The procedure is simpte because labeling process is unnecessary.The recovery of HSA and albumin in urine is 107% and 95% respectively.The standard deviation is tess than 10%.
文摘Porous ZnO films are synthesized by inorganic chelating sol-gel method,which is a novel sol-gel technique using zinc nitrate as starting materials and citric acid as the chelating reagent.The crystal structure,surface morphology,porous and optical properties of the deposited films are investigated.X-ray diffraction pattern analysis shows that crystal structure of the ZnO films is hexagonal wurtzite.Scanning electron microscopy (SEM) shows that the ZnO film is porous.The curve of pore size distribution has two peak values at about 2.02nm and 4.97nm and BET surface area of the ZnO film is 27.57m2/g.In addition,the transmittance spectrum gives a high transmittance of 85% in the visible region and optical bandgap of the ZnO film (fired at 500℃) is 3.25eV.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).
基金The work was supported by the National Basic Research Program of China (973 Program, No. 2004CB719504)
文摘The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120 ℃ and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence.
文摘Proton ligand stability constants of hydroxybenzoic acid containing nitro group (2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4- nitrobenzoic acid) were determined through lrving-Rossoti pH titration technique. The stability constants of rare earth metal chelates containing 2-Hydroxy-4-nitrobenzoic acid and 3-Hydroxy-4-nitrobenzoic acid as ligands were studied in aqueous medium at different ionic strength (p=0.01, 0.05 and 0.1 mol/L) and temperatures (298, 308 and 318± 0.1 K). The values of stability constant were evaluated through different computational methods like successive approximation, least square treatment, correction term method, and convergence method. The observed value of thermodynamic parameters (△G°, △H° and △S°) favors the complex formation between metal and ligands. The order of stabifity constant was found to be Pr(III)〈Nd(III)〈Sm(III)〈Tb(III)〈Ho(III)〈Er(III) as reported by Stagg and Powell.
基金Project(2007BAQ01055)supported by the National Key Technology R&D Program of ChinaProject(2011SCU11081)supported by the Sichuan University Funds for Young Scientists,ChinaProject(20120181120103)supported by Ph.D.Programs Foundation of the Ministry of Education of China
文摘The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.