In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical syst...In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.展开更多
Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification...Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification,the tooth profile modification is considered as time-varying gear backlash function acting along the line of action.Then the dynamic functions are solved by using Runge-Kutta numerical method.After analyzing the effect of tooth profile modification quantity( TPMQ) and relative tooth profile modification length( TPML) to the nonlinear dynamic characteristics of power split gear transmission,the following conclusions are drawn:1 The TPMQ of a certain stage transmission affects the vibration of its own stage more significantly than the other stage,and the coupling effect between two stages can be ignored usually in the modification design;2 If the first stage TPMLs are less than 0.3,the influence of the first stage TPMLs to the first stage transmission vibration is much more greatly than the influence of the second stage TPMLs to the first stage transmission vibration,or else both the first and second stage TPMLs affect the first stage transmission vibration largely.The same is true for the second stage TPMLs,and the cutoff value is 0.2;3 The TPMQ affects the vibration of power split gear transmission system more principally than the TPML,and should be top-priority in the modification design.展开更多
Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on th...Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the indepth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs, and the weak gels in these two cases became small gel particles after water flooding. The differences were: the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack, which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack, while in the quartz sand pack, the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water, the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.展开更多
A modification of central profile with trigonometric curve is proposed based on the theory of engagement of scroll compressor. General modification equations for central profile of a pair of scrolls are given and vari...A modification of central profile with trigonometric curve is proposed based on the theory of engagement of scroll compressor. General modification equations for central profile of a pair of scrolls are given and various modification patterns are discussed. The equidistant method is employed to calculate the volume of a sealed chamber and a set of general equations is represented. Modification parameters affecting geometric and dynamic property of a scroll compressor are analyzed systematically, and the relations between them are accurately determined. The condition for transforming a trigonometric curve modification into an arc-curve modification is explained. The conclusions can also be applied to other scroll fluid machines.展开更多
An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between th...An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between the rate of meshing stiffness and overlap ratio is given. On the basis of stiffness calculation, an optimization program for the optimal design of profile modification is developed according to the principle of internal point punishment function method.展开更多
The growth of Maesopsis under the influence of various geomorphic surfaces was followed within a period of 70 months. Young plants of two months old were transplanted into 70 × 70 × 70 cm holes under natural...The growth of Maesopsis under the influence of various geomorphic surfaces was followed within a period of 70 months. Young plants of two months old were transplanted into 70 × 70 × 70 cm holes under natural conditions (no inputs such as manure and other amendments). A randomized complete block design was set up for the experiment, alongside a control, and growth parameters followed (height and collar circumference). Three blocks with different geomorphic surfaces were put in place for the experiment (upper slope or block 1, middle slope or block 2 and foot slope or block 3). Results of the experiment indicated that geomorphic surface had a significant effect on height but not on collar circumference. Plant height increased progressively from upper slope to foot slope;less tall trees were found at the upper slope, while the tallest trees were found at the foot slope. After 70 months, maximum average height attained by plants for the experiment was 1228.3 cm, observed in block 3 (foot slope), significant at 0.05 confidence level with respect to geomorphic surface. In blocks 1 and 2 (upper slope and middle slope), maximum average heights attained were 798.5 and 937.5 cm, respectively and were shown to be statistically equal at 0.05 confidence level. Geomorphic surface had no effect on collar circumference. Maximum average collar circumferences attained after 70 months were 62.8 cm (observed at the upper slope), 61.3 cm (observed at the middle slope) and 76.3 cm (observed at the foot slope) and the various collar circumferences were shown to be statistically the same at 0.05 confidence level. For the control, maximum height attained after 70 months was 1240 cm (observed at the foot slope). At the upper slope and middle slope, maximum average heights were respectively, 800 cm and 905 cm, and were statistically equal at the 0.05 confidence level but different from the foot slope value of 1240 cm. Maximum average collar circumference was observed at the foot slope (76.3 cm), while circumferences of 62.8 cm and 61.3 cm were respectively observed at the upper and middle slopes. In the control, collar circumference was shown to be statistically equal at the upper and middle slopes but different from that at the foot slope at 0.05 confidence level. Correlations between growth parameters were more explained for the control than for the experiment. Increasing plant height was associated with decreasing percent slope (at a p-value of 0.05) corresponding to increasing soil depth favoring root exploration and soil and water retention. Profile modification enhanced plant growth and enabled the cultivation of trees on all geomorphic surfaces.展开更多
This paper examines the tooth failure in spur gears. Corrective measures are taken to avoid tooth damage by introducing profile modification in root fillet. In general, spur gear with less than 17 numbers of teeth had...This paper examines the tooth failure in spur gears. Corrective measures are taken to avoid tooth damage by introducing profile modification in root fillet. In general, spur gear with less than 17 numbers of teeth had the problem of undercutting during gear manufacturing process which minimizes the strength of gear at root. In this study, a novel design method, namely circular root fillet instead of the standard trochoidal root fillet is introduced in spur gear and analyzed using ANSYS version 11.0 software. The strength of these modified teeth is studied in comparison with the standard design. The analysis demonstrates that the novel design exhibit higher bending strength over the standard trochoidal root fillet gear. The result reveals that the circular root fillet design is particularly suitable for lesser number of teeth in pinion and where as the trochoidal root fillet gear is more opt for higher number of teeth.展开更多
In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of s...In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.展开更多
A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a de...A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.展开更多
The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of w...The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.展开更多
The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for e...The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.展开更多
To reduce vibration and noise and increase transmission efficiency, a three segment method for modifying the pinion profile was proposed. Cutter surface equations were deduced by changing the shape of the cutter-edge,...To reduce vibration and noise and increase transmission efficiency, a three segment method for modifying the pinion profile was proposed. Cutter surface equations were deduced by changing the shape of the cutter-edge, substituting three segment parabolas for the line. The influence of longitudinal tooth modifications on tooth surface load distributions was discussed. Transmission error minimization and uniformity of tooth surface load distribution were chosen as optimization goals and the modified parameters were obtained by applying the complex method. Finally, an experiment comparing the loaded transmission error, vibration, and noise both before and after modifications was carried out. The results indicate that the modified design is reliable.展开更多
基金Supported by the Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology
文摘In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.
基金Sponsored by the National Natural Science Foundation of China(Grant No.2009AA04Z404)
文摘Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification,the tooth profile modification is considered as time-varying gear backlash function acting along the line of action.Then the dynamic functions are solved by using Runge-Kutta numerical method.After analyzing the effect of tooth profile modification quantity( TPMQ) and relative tooth profile modification length( TPML) to the nonlinear dynamic characteristics of power split gear transmission,the following conclusions are drawn:1 The TPMQ of a certain stage transmission affects the vibration of its own stage more significantly than the other stage,and the coupling effect between two stages can be ignored usually in the modification design;2 If the first stage TPMLs are less than 0.3,the influence of the first stage TPMLs to the first stage transmission vibration is much more greatly than the influence of the second stage TPMLs to the first stage transmission vibration,or else both the first and second stage TPMLs affect the first stage transmission vibration largely.The same is true for the second stage TPMLs,and the cutoff value is 0.2;3 The TPMQ affects the vibration of power split gear transmission system more principally than the TPML,and should be top-priority in the modification design.
文摘Two sand packs were filled with fine glass beads and quartz sand respectively. The characteristics of crosslinked polymer flowing through the sand packs as well as the influence of shear fracture of porous media on the indepth profile modification of the weak gel generated from the crosslinked polymer were investigated. The results indicated that under the dynamic condition crosslinking reaction happened in both sand packs, and the weak gels in these two cases became small gel particles after water flooding. The differences were: the dynamic gelation time in the quartz sand pack was longer than that in the glass bead pack. Residual resistance factor (FRR) caused by the weak gel in the quartz sand pack was smaller than that in the glass bead pack. The weak gel became gel particles after being scoured by subsequent flood water. A weak gel with uniform apparent viscosity and sealing characteristics was generated in every part of the glass bead pack, which could not only move deeply into the sand pack but also seal the high capacity channels again when it reached the deep part. The weak gel performed in-depth profile modification in the glass bead pack, while in the quartz sand pack, the weak gel was concentrated with 100 cm from the entrance of the sand pack. When propelled by the subsequent flood water, the weak gel could move towards the deep part of the sand pack but then became tiny gel particles and could not effectively seal the high capacity channels there. The in-depth profile modification of the weak gel was very weak in the quartz sand pack. It was the shear fracture of porous media that mainly affected the properties and weakened the in-depth profile modification of the weak gel.
基金This project is supported by Provincial Natural Science Foundation of Gansu(No.ZS032-B25-026).
文摘A modification of central profile with trigonometric curve is proposed based on the theory of engagement of scroll compressor. General modification equations for central profile of a pair of scrolls are given and various modification patterns are discussed. The equidistant method is employed to calculate the volume of a sealed chamber and a set of general equations is represented. Modification parameters affecting geometric and dynamic property of a scroll compressor are analyzed systematically, and the relations between them are accurately determined. The condition for transforming a trigonometric curve modification into an arc-curve modification is explained. The conclusions can also be applied to other scroll fluid machines.
文摘An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between the rate of meshing stiffness and overlap ratio is given. On the basis of stiffness calculation, an optimization program for the optimal design of profile modification is developed according to the principle of internal point punishment function method.
文摘The growth of Maesopsis under the influence of various geomorphic surfaces was followed within a period of 70 months. Young plants of two months old were transplanted into 70 × 70 × 70 cm holes under natural conditions (no inputs such as manure and other amendments). A randomized complete block design was set up for the experiment, alongside a control, and growth parameters followed (height and collar circumference). Three blocks with different geomorphic surfaces were put in place for the experiment (upper slope or block 1, middle slope or block 2 and foot slope or block 3). Results of the experiment indicated that geomorphic surface had a significant effect on height but not on collar circumference. Plant height increased progressively from upper slope to foot slope;less tall trees were found at the upper slope, while the tallest trees were found at the foot slope. After 70 months, maximum average height attained by plants for the experiment was 1228.3 cm, observed in block 3 (foot slope), significant at 0.05 confidence level with respect to geomorphic surface. In blocks 1 and 2 (upper slope and middle slope), maximum average heights attained were 798.5 and 937.5 cm, respectively and were shown to be statistically equal at 0.05 confidence level. Geomorphic surface had no effect on collar circumference. Maximum average collar circumferences attained after 70 months were 62.8 cm (observed at the upper slope), 61.3 cm (observed at the middle slope) and 76.3 cm (observed at the foot slope) and the various collar circumferences were shown to be statistically the same at 0.05 confidence level. For the control, maximum height attained after 70 months was 1240 cm (observed at the foot slope). At the upper slope and middle slope, maximum average heights were respectively, 800 cm and 905 cm, and were statistically equal at the 0.05 confidence level but different from the foot slope value of 1240 cm. Maximum average collar circumference was observed at the foot slope (76.3 cm), while circumferences of 62.8 cm and 61.3 cm were respectively observed at the upper and middle slopes. In the control, collar circumference was shown to be statistically equal at the upper and middle slopes but different from that at the foot slope at 0.05 confidence level. Correlations between growth parameters were more explained for the control than for the experiment. Increasing plant height was associated with decreasing percent slope (at a p-value of 0.05) corresponding to increasing soil depth favoring root exploration and soil and water retention. Profile modification enhanced plant growth and enabled the cultivation of trees on all geomorphic surfaces.
文摘This paper examines the tooth failure in spur gears. Corrective measures are taken to avoid tooth damage by introducing profile modification in root fillet. In general, spur gear with less than 17 numbers of teeth had the problem of undercutting during gear manufacturing process which minimizes the strength of gear at root. In this study, a novel design method, namely circular root fillet instead of the standard trochoidal root fillet is introduced in spur gear and analyzed using ANSYS version 11.0 software. The strength of these modified teeth is studied in comparison with the standard design. The analysis demonstrates that the novel design exhibit higher bending strength over the standard trochoidal root fillet gear. The result reveals that the circular root fillet design is particularly suitable for lesser number of teeth in pinion and where as the trochoidal root fillet gear is more opt for higher number of teeth.
基金Project(2011CB706800-G)supported by the National Basic Research Program of ChinaProject(51375159)supported by the National Natural Science Foundation of China+1 种基金Project(20120162110004)supported by the Postdoctoral Science Foundation of ChinaProject(2015JJ5020)supported by the Science Foundation of Hunan Province,China
文摘In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.
文摘A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.
基金supported by the Core Technology Application of Hubei Agricultural Machinery Equipment,China(Grant No.HBSNYT202221).
文摘The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.
基金supported by National Natural Science Foundation of China(Grant Nos. 50775190No.51275425)+2 种基金Spring Sunshine Plan of Ministry of Education of China(Grant No. 10202258)Talent Introduction of Xihua UniversityChina(Grant No. Z1220217)
文摘The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.
基金Supported by the National Natural Science Foundation under Grant No. 50875211
文摘To reduce vibration and noise and increase transmission efficiency, a three segment method for modifying the pinion profile was proposed. Cutter surface equations were deduced by changing the shape of the cutter-edge, substituting three segment parabolas for the line. The influence of longitudinal tooth modifications on tooth surface load distributions was discussed. Transmission error minimization and uniformity of tooth surface load distribution were chosen as optimization goals and the modified parameters were obtained by applying the complex method. Finally, an experiment comparing the loaded transmission error, vibration, and noise both before and after modifications was carried out. The results indicate that the modified design is reliable.