In this work, nitrogen doped clews-like carbon materials were successfully fabricated through hydrothermal polymerization method, followed by post treatment that integrated the carbonization,activation and post-nitrog...In this work, nitrogen doped clews-like carbon materials were successfully fabricated through hydrothermal polymerization method, followed by post treatment that integrated the carbonization,activation and post-nitrogen doping into one process. This preparation method can form particular hierarchical porous structure without using any sacrificial templates. The experimental results show that the nitrogen doped clews-like hierarchical porous carbon materials possess a relatively high specific surface area of 815 m^2/g with the nitrogen content of 10.58 at%. The electrochemical properties show that the resulting sample delivers 258 F/g at a 0.5 A/g and excellent capacity retention of 79% at 20 A/g. After conducting 10,000 charge-discharge cycles at 10 A/g, the capacitance retention of 98.3% is achieved.These intriguing results demonstrate that the obtained nitrogen doped clews-like carbon materials will be promising electrode materials for supercapacitor and other energy storage devices.展开更多
基金supported by the National Natural Science Foundation of China(No. 51802122)the Natural Science Fund of Hubei Province(No.2017CFB155)+4 种基金China Scholarship Council (No. 201808420401)Scientific Research Plan Project of Hubei Education Department(No. B2017269)Scientific Research Initial funding for the Advanced Talent of Jianghan University (No. 1009-06810001)Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University(Nos. JDGD-201702,JDGD-201811)Hubei Provincial Department of Education for the "Chutian Scholar" program
文摘In this work, nitrogen doped clews-like carbon materials were successfully fabricated through hydrothermal polymerization method, followed by post treatment that integrated the carbonization,activation and post-nitrogen doping into one process. This preparation method can form particular hierarchical porous structure without using any sacrificial templates. The experimental results show that the nitrogen doped clews-like hierarchical porous carbon materials possess a relatively high specific surface area of 815 m^2/g with the nitrogen content of 10.58 at%. The electrochemical properties show that the resulting sample delivers 258 F/g at a 0.5 A/g and excellent capacity retention of 79% at 20 A/g. After conducting 10,000 charge-discharge cycles at 10 A/g, the capacitance retention of 98.3% is achieved.These intriguing results demonstrate that the obtained nitrogen doped clews-like carbon materials will be promising electrode materials for supercapacitor and other energy storage devices.