Well-defined poly(N-allyl alanine)has been synthesized by heterogenous ring-opening polymerization(HROP)of less reactive N-allyl-alanine N-carboxyanhydride,using acetic acid as the catalyst and benzylamine as the init...Well-defined poly(N-allyl alanine)has been synthesized by heterogenous ring-opening polymerization(HROP)of less reactive N-allyl-alanine N-carboxyanhydride,using acetic acid as the catalyst and benzylamine as the initiator,in non-polar n-hexane.Interestingly,the polymerization exhibited typical features of living polymerization though both monomer(liquid)and polymer(solid)have minimal solubility in n-hexane.The obtained polymer showed a stable helix structure independent of the temperatures screened,as evidenced by circular dichroism analysis.Also,the preliminary study demonstrated that the side chains can be post-functionalized through thiol-ene click chemistry with quantitative conversion.Together,this work provides guidance for the development of accelerated HROP of other liquid monomers bearing low reactivity.Besides,the helical and functionalizable poly(N-allyl alanine)could be a useful“clickable platform”for the design of variable biomaterials via efficient click chemistry.展开更多
Upon the osteoporotic condition,sluggish osteogenesis,excessive bone resorption,and chronic inflammation make the osseointegration of bioinert titanium(Ti)implants with surrounding bone tissues difficult,often lead to...Upon the osteoporotic condition,sluggish osteogenesis,excessive bone resorption,and chronic inflammation make the osseointegration of bioinert titanium(Ti)implants with surrounding bone tissues difficult,often lead to prosthesis loosening,bone collapse,and implant failure.In this study,we firstly designed clickable mussel-inspired peptides(DOPA-N3)and grafted them onto the surfaces of Ti materials through robust catechol-TiO2 coordinative interactions.Then,two dibenzylcyclooctyne(DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain(BMP-2)were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction.We characterized the surface morphology and biocompatibility of the Ti substrates and optimized the osteogenic capacity of Ti surfaces through adjusting the ideal ratios of BMP-2/RGD at 3:1.In vitro,the dual-functionalized Ti substrates exhibited excellent promotion on adhesion and osteogenesis of mesenchymal stem cells(MSCs),and conspicuous immunopolarization-regulation to shift macrophages to alternative(M2)phenotypes and inhibit inflammation,as well as enhancement of osseointegration and mechanical stability in osteoporotic rats.In summary,our biomimetic surface modification strategy by bio-orthogonal reaction provided a convenient and feasible method to resolve the bioinertia and clinical complications of Ti-based implants,which was conducive to the long-term success of Ti implants,especially in the osteoporotic or inflammatory conditions.展开更多
基金supported by the National Natural Science Foundation of China(22201197,21925107)the Collaborative Innovation Center of Suzhou Nano Science and Technology,National Key R&D Program of China(2022YFB3704900)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220507)the Natural Science Foundation of Jiangsu Higher Education Institutions(21KJB150035)。
文摘Well-defined poly(N-allyl alanine)has been synthesized by heterogenous ring-opening polymerization(HROP)of less reactive N-allyl-alanine N-carboxyanhydride,using acetic acid as the catalyst and benzylamine as the initiator,in non-polar n-hexane.Interestingly,the polymerization exhibited typical features of living polymerization though both monomer(liquid)and polymer(solid)have minimal solubility in n-hexane.The obtained polymer showed a stable helix structure independent of the temperatures screened,as evidenced by circular dichroism analysis.Also,the preliminary study demonstrated that the side chains can be post-functionalized through thiol-ene click chemistry with quantitative conversion.Together,this work provides guidance for the development of accelerated HROP of other liquid monomers bearing low reactivity.Besides,the helical and functionalizable poly(N-allyl alanine)could be a useful“clickable platform”for the design of variable biomaterials via efficient click chemistry.
基金This work was supported by the National Key Research and Development Program of China(2019YFA0112000)the National Natural Science Foundation of China(81972059,81772358,21875092)+1 种基金the key R&D programs of Jiangsu Province(BE2019668),China Postdoctoral Science Foundation(2020M671587)Jiangsu Provincial Clinical Orthopedic Center,Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the High-level Talents Research and Development Program of Affiliated Dongguan Hospital,Southern Medical University(K202102).
文摘Upon the osteoporotic condition,sluggish osteogenesis,excessive bone resorption,and chronic inflammation make the osseointegration of bioinert titanium(Ti)implants with surrounding bone tissues difficult,often lead to prosthesis loosening,bone collapse,and implant failure.In this study,we firstly designed clickable mussel-inspired peptides(DOPA-N3)and grafted them onto the surfaces of Ti materials through robust catechol-TiO2 coordinative interactions.Then,two dibenzylcyclooctyne(DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain(BMP-2)were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction.We characterized the surface morphology and biocompatibility of the Ti substrates and optimized the osteogenic capacity of Ti surfaces through adjusting the ideal ratios of BMP-2/RGD at 3:1.In vitro,the dual-functionalized Ti substrates exhibited excellent promotion on adhesion and osteogenesis of mesenchymal stem cells(MSCs),and conspicuous immunopolarization-regulation to shift macrophages to alternative(M2)phenotypes and inhibit inflammation,as well as enhancement of osseointegration and mechanical stability in osteoporotic rats.In summary,our biomimetic surface modification strategy by bio-orthogonal reaction provided a convenient and feasible method to resolve the bioinertia and clinical complications of Ti-based implants,which was conducive to the long-term success of Ti implants,especially in the osteoporotic or inflammatory conditions.