Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients m...Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.展开更多
Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical o...Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.展开更多
Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly...Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly hundreds of billions of devices will be linked together.These smart devices will be able to gather data,process it,and even come to decisions on their own.Security is the most essential thing in these situations.In IoT infrastructure,authenticated key exchange systems are crucial for preserving client and data privacy and guaranteeing the security of data-in-transit(e.g.,via client identification and provision of secure communication).It is still challenging to create secure,authenticated key exchange techniques.The majority of the early authenticated key agreement procedure depended on computationally expensive and resource-intensive pairing,hashing,or modular exponentiation processes.The focus of this paper is to propose an efficient three-party authenticated key exchange procedure(AKEP)using Chebyshev chaotic maps with client anonymity that solves all the problems mentioned above.The proposed three-party AKEP is protected from several attacks.The proposed three-party AKEP can be used in practice for mobile communications and pervasive computing applications,according to statistical experiments and low processing costs.To protect client identification when transferring data over an insecure public network,our three-party AKEP may also offer client anonymity.Finally,the presented procedure offers better security features than the procedures currently available in the literature.展开更多
由于油气勘探开发中井下高温高压和复杂压力系统导致钻井过程面临的风险日益增大,因此迫切需要一款集工况数据模拟计算与井下复杂监测控制相结合的软件系统,助力实现安全高效钻井。为此,运用先进的控压钻井技术,实时监测井底压力、钻井...由于油气勘探开发中井下高温高压和复杂压力系统导致钻井过程面临的风险日益增大,因此迫切需要一款集工况数据模拟计算与井下复杂监测控制相结合的软件系统,助力实现安全高效钻井。为此,运用先进的控压钻井技术,实时监测井底压力、钻井液循环出入口流量差和密度等关键参数的变化,分析井下工况的变化,实现在钻井过程中井筒压力的快速、准确控制,有效降低钻井过程的安全隐患,及早发现并快速控制井下复杂情况,为形成预测、预控和快速处置的井筒安全提供支持。设计的控压钻井计算模拟与控制软件旨在从录井、PWD(Pressure While Drilling)、MWD(Measure While Drilling)、控压等设备获取钻井相关信息,建立水力学模型计算井筒压力、流量等参数。通过采用客户端/服务端网络架构,实现了多个客户端同时连接一个服务端,达到客户端数据同步的效果,经现场验证既可满足单机使用,又可方便网络连接,实现后方集中分析处理与远程操控。结果表明,该软件能准确地模拟计算各种钻井参数,保证安全高效钻井。实现了控压钻井由现场工程师处理模式转变为后方基于数据平台的模式,奠定了1个平台对N个现场控压钻井装备之间的互联互通基础,有力推动了控压钻井的智能化发展。展开更多
为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性...为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。展开更多
基金supported by Key Research and Development Program of China (No.2022YFC3005401)Key Research and Development Program of Yunnan Province,China (Nos.202203AA080009,202202AF080003)+1 种基金Science and Technology Achievement Transformation Program of Jiangsu Province,China (BA2021002)Fundamental Research Funds for the Central Universities (Nos.B220203006,B210203024).
文摘Data sharing and privacy protection are made possible by federated learning,which allows for continuous model parameter sharing between several clients and a central server.Multiple reliable and high-quality clients must participate in practical applications for the federated learning global model to be accurate,but because the clients are independent,the central server cannot fully control their behavior.The central server has no way of knowing the correctness of the model parameters provided by each client in this round,so clients may purposefully or unwittingly submit anomalous data,leading to abnormal behavior,such as becoming malicious attackers or defective clients.To reduce their negative consequences,it is crucial to quickly detect these abnormalities and incentivize them.In this paper,we propose a Federated Learning framework for Detecting and Incentivizing Abnormal Clients(FL-DIAC)to accomplish efficient and security federated learning.We build a detector that introduces an auto-encoder for anomaly detection and use it to perform anomaly identification and prevent the involvement of abnormal clients,in particular for the anomaly client detection problem.Among them,before the model parameters are input to the detector,we propose a Fourier transform-based anomaly data detectionmethod for dimensionality reduction in order to reduce the computational complexity.Additionally,we create a credit scorebased incentive structure to encourage clients to participate in training in order tomake clients actively participate.Three training models(CNN,MLP,and ResNet-18)and three datasets(MNIST,Fashion MNIST,and CIFAR-10)have been used in experiments.According to theoretical analysis and experimental findings,the FL-DIAC is superior to other federated learning schemes of the same type in terms of effectiveness.
文摘Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.
文摘Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly hundreds of billions of devices will be linked together.These smart devices will be able to gather data,process it,and even come to decisions on their own.Security is the most essential thing in these situations.In IoT infrastructure,authenticated key exchange systems are crucial for preserving client and data privacy and guaranteeing the security of data-in-transit(e.g.,via client identification and provision of secure communication).It is still challenging to create secure,authenticated key exchange techniques.The majority of the early authenticated key agreement procedure depended on computationally expensive and resource-intensive pairing,hashing,or modular exponentiation processes.The focus of this paper is to propose an efficient three-party authenticated key exchange procedure(AKEP)using Chebyshev chaotic maps with client anonymity that solves all the problems mentioned above.The proposed three-party AKEP is protected from several attacks.The proposed three-party AKEP can be used in practice for mobile communications and pervasive computing applications,according to statistical experiments and low processing costs.To protect client identification when transferring data over an insecure public network,our three-party AKEP may also offer client anonymity.Finally,the presented procedure offers better security features than the procedures currently available in the literature.
文摘由于油气勘探开发中井下高温高压和复杂压力系统导致钻井过程面临的风险日益增大,因此迫切需要一款集工况数据模拟计算与井下复杂监测控制相结合的软件系统,助力实现安全高效钻井。为此,运用先进的控压钻井技术,实时监测井底压力、钻井液循环出入口流量差和密度等关键参数的变化,分析井下工况的变化,实现在钻井过程中井筒压力的快速、准确控制,有效降低钻井过程的安全隐患,及早发现并快速控制井下复杂情况,为形成预测、预控和快速处置的井筒安全提供支持。设计的控压钻井计算模拟与控制软件旨在从录井、PWD(Pressure While Drilling)、MWD(Measure While Drilling)、控压等设备获取钻井相关信息,建立水力学模型计算井筒压力、流量等参数。通过采用客户端/服务端网络架构,实现了多个客户端同时连接一个服务端,达到客户端数据同步的效果,经现场验证既可满足单机使用,又可方便网络连接,实现后方集中分析处理与远程操控。结果表明,该软件能准确地模拟计算各种钻井参数,保证安全高效钻井。实现了控压钻井由现场工程师处理模式转变为后方基于数据平台的模式,奠定了1个平台对N个现场控压钻井装备之间的互联互通基础,有力推动了控压钻井的智能化发展。
文摘为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。