A U-abundant semigroup S in which every H-class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup.This is an analogue of regular semigroups which are unions of groups ...A U-abundant semigroup S in which every H-class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup.This is an analogue of regular semigroups which are unions of groups and an analogue of abundant semigroups which are superabundant.In 1941,Clifford proved that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups.Several years later,Fountain generalized this result to the class of superabundant semigroups.In this paper,we extend their work to U-superabundant semigroups.展开更多
In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic me...In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.展开更多
In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauch...In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauchy-type integral taken over a smooth surface by rather simple method.展开更多
In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness...In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness, give the definitions of k-poles, isolated and essential singular points and removable singularity, discuss some properties, and further obtain the residue theorems.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.10671151,10971160,10871161)Natural Science Foundation of of Shaanxi Province (Grant No.SJ08A06)a grant of Wu Jiehyee Charitable Foundation,Hong Kong 2007/09
文摘A U-abundant semigroup S in which every H-class of S contains an element in the set of projections U of S is said to be a U-superabundant semigroup.This is an analogue of regular semigroups which are unions of groups and an analogue of abundant semigroups which are superabundant.In 1941,Clifford proved that a semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups.Several years later,Fountain generalized this result to the class of superabundant semigroups.In this paper,we extend their work to U-superabundant semigroups.
基金supported by NNSF of China(11171260)RFDP of Higher Education of China(20100141110054)
文摘In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.
基金Project supported by NNSF of China(10471107)RFDP of Higher Eduction of China(20060486001)
文摘In this article,the authors discussed the boundary behavior for the Cauchy- type integrals with values in a Clifford algebra,obtained some Sochocki–Plemelj formulae and Privalov–Muskhelishvili theorems for the Cauchy-type integral taken over a smooth surface by rather simple method.
基金Supported by the National Natural Science Foundation of China (10471107)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486001)
文摘In this context, we mainly study the behavior in the neighborhood of finite singular points for k-regular functions in R1^n with values in R0、n. We get a Laurent expansion of them in an open set, prove its uniqueness, give the definitions of k-poles, isolated and essential singular points and removable singularity, discuss some properties, and further obtain the residue theorems.