There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gan...There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gana species exist in the Inner Mongolia region. These Caragana species exhibit a distribution pattern across moisture zones and form a geographical replacement series. In order to examine the mechanisms responsible for Caragana species distribution pattern, we selected 12 Caragana species that exhibit a distinct distribution pattern across multiple moisture zones in the Inner Mongolia region, and determined the relationships between the leaf ecological and physiological traits of these Caragana species and the aridity index and solar radiation. Along with the climatic drought gradient and the solar radiation intensification from the northeast to the southwest, leaf eco- logical characteristics of Caragana species changed drastically, i.e. the leaf shape gradually turned from flat into tegular or tubbish; the leaf hair became denser, longer and lighter in color; the leaf area, leaf biomass and specific leaf area (SLA) decreased significantly; the leaf thickness and the ratio of leaf thickness to leaf area increased sig- nificantly; and the leaf chlorophyll content decreased significantly. As the climatic drought stress increased, osmotic potentials of the main osmotic adjustment substances and the cytoplasmic ion concentration of Caragana species increased significantly. Meanwhile, the total and free water contents and water potential of leaves decreased sig- nificantly; the ratio of bound to free water increased significantly; the stomatal conductance and transpiration rate reduced significantly; and the water use efficiency (WUE) increased significantly. In addition, with the intensification of climatic drought stress, peroxidase (POD) and superoxide dismutase (SOD) activities in leaves increased significantly. As a result, the malondialdehyde (MDA) content increased while the oxygen free radical content decreased. Our results showed that most of the leaf ecological and physiological traits of the 12 Caragana species varied in accordance with the climatic drought gradient in the Inner Mongolia region, which reflected the adaptation of the Caragana species to the local climate conditions. With relatively more active metabolism and faster growth, the Caragana species in the northeast had strong competitive abilities; on the other hand, with stronger resistance to climatic drought stress, the Caragana species in the southwest could survive in harsh environments. Based on our results, we con- cluded that both the environmental gradients and the adaptive responses of Caragana species to their environments played important roles in the formation of the Caragana species distribution pattern across the Inner Mongolia region.展开更多
Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were...Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and(fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.展开更多
Rapid urbanization has led to dramatic changes in urban forest structures and functions, and consequently affects carbon(C) storage in cities. In this study, field surveys were combined with high resolution images to ...Rapid urbanization has led to dramatic changes in urban forest structures and functions, and consequently affects carbon(C) storage in cities. In this study, field surveys were combined with high resolution images to investigate the variability of C storage of urban forests in Changchun, Northeast China. The main objectives of this study were to quantify the C storage of urban forests in Changchun City, Northeast China and understand the effects of forest type and urbanization on C storage of urban forests. The results showed that the mean C density and the total C storage of urban forests in Changchun were 4.41 kg/m2 and 4.74 × 108 kg, respectively. There were significant differences in C density among urban forest types. Landscape and relaxation forest(LF) had the highest C density with 5.41 kg/m2, while production and management forest(PF) had the lowest C density with 1.46 kg/m2. These differences demonstrate that urban forest type is an important factor needed to be considered when the C storage is accurately estimated. Further findings revealed significant differences in different gradients of urbanization, and the mean C density decreased from the first ring(6.99 kg/m2) to the fourth ring(2.87 kg/m2). The total C storage increased from the first ring to the third ring. These results indicate that C storage by urban forests will be significantly changed during the process of urbanization. The results can provide insights for decision-makers and urban planners to better understand the effects of forest type and urbanization on C storage of urban forests in Changchun, and make better management plans for urban forests.展开更多
The significant role of tropical forest ecosystems in the global carbon budget has increased the need for accurate estimates of tropical forest biomass.The lack of large-scale biomass allometric equations hampers the ...The significant role of tropical forest ecosystems in the global carbon budget has increased the need for accurate estimates of tropical forest biomass.The lack of large-scale biomass allometric equations hampers the understanding of the spatial distribution of tree biomass and carbon stocks and their influencing factors in West Africa.This study aimed to develop allometric equations to estimate aboveground biomass of African oak(Afzelia africana Sm.)in Burkina Faso and to analyze factors affecting the variability of tree biomass and carbon storage.Sixty individual trees were destructively sampled in four protected areas along two climatic zones.In each climatic zone,log–log models were tested and fitted to each aboveground biomass component and to the total aboveground biomass.Carbon content in tree aboveground components was evaluated using the ash method.All validated equations showed good fit and performance with high explained variance.Allometric equations differed between the Sudano-sahelian zone and the Sudanian zone,except for leaf biomass equations.Both biomass allocation and carbon content varied significantly between tree components but not between climatic zones.Carbon content in tree components followed the patterns of biomass allocation with branches accounting for the highest proportion.In the two climatic zones,carbon contents were 50.18–52.62%for leaves,54.78–54.94%for stems and 54.96–55.99%for branches.Dry biomass ranged from 509.05 to 765.56 kg tree^-1 at site level and from 620.21 to 624.48 kg tree^-1 along climatic zones.Carbon content varied from 53.90%in the Sudano-sahelian zone to 54.39%in the Sudanian zone.This study indicated that climate does not influence aboveground biomass production and carbon sequestration of Afzelia africana along the Sudanosahelian and the Sudanian climatic zones of Burkina Faso.Future studies on climate–growth relationships should contribute to better understanding climate effects on biomass production and carbon storage.展开更多
Forests play an important role in mitigating climate change by absorbing carbon from atmosphere. The global forests sequestrated 2.4±0.4 Pg C y^-1 from 1990 to 2007, while the quantitative assessment on the carbo...Forests play an important role in mitigating climate change by absorbing carbon from atmosphere. The global forests sequestrated 2.4±0.4 Pg C y^-1 from 1990 to 2007, while the quantitative assessment on the carbon sequestration potential (CSP) of global forests has much uncertainty. We collected and compiled a database of site above-ground biomass (AGB) of global mature forests, and obtained AGB carbon carrying capacity (CCC) of global forests by interpolating global mature forest site data. The results show that: (i) at a global scale, the AGB of mature forests decline mainly from tropical forests to boreal forests, and the maximum AGB occurs in middle latitude regions; (ii) temperature and precipitation are main factors influencing the AGB of mature forests; and (iii) the above-ground biomass CCC of global forests is about 586.2±49.3 Pg C, and with CSP of 313.4 Pg C. Therefore, achieving CCC of the existing forests by reducing human disturbance is an option for mitigating greenhouse gas emission.展开更多
Microbial carbon use efficiency(CUE)affects the soil C cycle to a great extent,but how soil organisms and the abiotic environment combine to influence CUE at a regional scale remains poorly understood.In the current s...Microbial carbon use efficiency(CUE)affects the soil C cycle to a great extent,but how soil organisms and the abiotic environment combine to influence CUE at a regional scale remains poorly understood.In the current study,microcosms were used to investigate how microbial respiration,biomass,and CUE responded to biotic and abiotic factors in natural tropical,subtropical,and temperate forests.Soil samples from the forests were collected,sterilized,and populated with one or a combination of three types of soil organisms(the fungus Botrytis cinerea,the bacterium Escherichia coli,and the nematode Caenorhabditis elegans).The microcosms were then kept at the mean soil temperatures of the corresponding forests.Microbial respiration,biomass,and CUE were measured over one-month incubation period.The results showed that microbial biomass and CUE were significantly higher,but microbial respiration lower in the subtropical and temperate forest soils than in tropical forest soil.Biotic factors mainly affected CUE by their effect on microbial biomass,while temperature affected CUE by altering respiration.Our results indicate that temperature regulates the interactive effects of soil organisms on microbial biomass,respiration,and CUE,which would provide a basis for understanding the soil C cycle in forest ecosystems.展开更多
Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abioti...Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abiotic and biotic factors have significant effects on WUE in forest ecosystems. However, responses of WUE to phenology in the context of climate change remain poorly understood. In this study, we analyzed the sensitivity and response patterns of seasonal WUE to phenology in Zhejiang Province where typical subtropical forest ecosystems are located, and discussed potential causes of the changes of the sensitivity and response patterns along different climate gradient during 2000–2014. The results of interannual partial correlation analysis showed widespread negative correlations between WUE and the start of growing season(SOS) in spring. This is because the increase in gross primary product(GPP) is larger than that of evapotranspiration(ET), resulting from an advanced SOS. The positive correlation between WUE and SOS was widely observed in summer mainly because of water stress and plant ecological strategy. The autumn WUE enhanced with the delay in the end of growing season(EOS)mainly because of the increase in GPP meanwhile the decrease or steadiness in ET, resulting from a delayed EOS. In space, the sensitivity of spring WUE to SOS significantly decreased along the radiation gradient, which might be related to strong soil evaporation in high radiation area;the sensitivity of WUE to SOS in summer showed a positive correlation with precipitation and a negative correlation with temperature, respectively, which might be attributed to the compensation of GPP to the delayed SOS and water stress caused by high temperature. The sensitivity of WUE to EOS increased significantly along the radiation and precipitation gradients in autumn, which may be because the increase of radiation and precipitation provides more water and energy for photosynthesis.展开更多
基金funded by the National Natural Science Foundation of China (31170381, 31100330)the National Basic Research Program of China (2007CB106802)
文摘There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gana species exist in the Inner Mongolia region. These Caragana species exhibit a distribution pattern across moisture zones and form a geographical replacement series. In order to examine the mechanisms responsible for Caragana species distribution pattern, we selected 12 Caragana species that exhibit a distinct distribution pattern across multiple moisture zones in the Inner Mongolia region, and determined the relationships between the leaf ecological and physiological traits of these Caragana species and the aridity index and solar radiation. Along with the climatic drought gradient and the solar radiation intensification from the northeast to the southwest, leaf eco- logical characteristics of Caragana species changed drastically, i.e. the leaf shape gradually turned from flat into tegular or tubbish; the leaf hair became denser, longer and lighter in color; the leaf area, leaf biomass and specific leaf area (SLA) decreased significantly; the leaf thickness and the ratio of leaf thickness to leaf area increased sig- nificantly; and the leaf chlorophyll content decreased significantly. As the climatic drought stress increased, osmotic potentials of the main osmotic adjustment substances and the cytoplasmic ion concentration of Caragana species increased significantly. Meanwhile, the total and free water contents and water potential of leaves decreased sig- nificantly; the ratio of bound to free water increased significantly; the stomatal conductance and transpiration rate reduced significantly; and the water use efficiency (WUE) increased significantly. In addition, with the intensification of climatic drought stress, peroxidase (POD) and superoxide dismutase (SOD) activities in leaves increased significantly. As a result, the malondialdehyde (MDA) content increased while the oxygen free radical content decreased. Our results showed that most of the leaf ecological and physiological traits of the 12 Caragana species varied in accordance with the climatic drought gradient in the Inner Mongolia region, which reflected the adaptation of the Caragana species to the local climate conditions. With relatively more active metabolism and faster growth, the Caragana species in the northeast had strong competitive abilities; on the other hand, with stronger resistance to climatic drought stress, the Caragana species in the southwest could survive in harsh environments. Based on our results, we con- cluded that both the environmental gradients and the adaptive responses of Caragana species to their environments played important roles in the formation of the Caragana species distribution pattern across the Inner Mongolia region.
基金partly sponsored by Color Line Aksjeselskap, Oslo
文摘Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and(fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.
基金Under the auspices of Excellent Young Scholars of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.DLSYQ13004)Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams(No.KZZD-EW-TZ-07-09)
文摘Rapid urbanization has led to dramatic changes in urban forest structures and functions, and consequently affects carbon(C) storage in cities. In this study, field surveys were combined with high resolution images to investigate the variability of C storage of urban forests in Changchun, Northeast China. The main objectives of this study were to quantify the C storage of urban forests in Changchun City, Northeast China and understand the effects of forest type and urbanization on C storage of urban forests. The results showed that the mean C density and the total C storage of urban forests in Changchun were 4.41 kg/m2 and 4.74 × 108 kg, respectively. There were significant differences in C density among urban forest types. Landscape and relaxation forest(LF) had the highest C density with 5.41 kg/m2, while production and management forest(PF) had the lowest C density with 1.46 kg/m2. These differences demonstrate that urban forest type is an important factor needed to be considered when the C storage is accurately estimated. Further findings revealed significant differences in different gradients of urbanization, and the mean C density decreased from the first ring(6.99 kg/m2) to the fourth ring(2.87 kg/m2). The total C storage increased from the first ring to the third ring. These results indicate that C storage by urban forests will be significantly changed during the process of urbanization. The results can provide insights for decision-makers and urban planners to better understand the effects of forest type and urbanization on C storage of urban forests in Changchun, and make better management plans for urban forests.
基金funded by the German Federal Ministry of Education and Research (BMBF) through the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) program。
文摘The significant role of tropical forest ecosystems in the global carbon budget has increased the need for accurate estimates of tropical forest biomass.The lack of large-scale biomass allometric equations hampers the understanding of the spatial distribution of tree biomass and carbon stocks and their influencing factors in West Africa.This study aimed to develop allometric equations to estimate aboveground biomass of African oak(Afzelia africana Sm.)in Burkina Faso and to analyze factors affecting the variability of tree biomass and carbon storage.Sixty individual trees were destructively sampled in four protected areas along two climatic zones.In each climatic zone,log–log models were tested and fitted to each aboveground biomass component and to the total aboveground biomass.Carbon content in tree aboveground components was evaluated using the ash method.All validated equations showed good fit and performance with high explained variance.Allometric equations differed between the Sudano-sahelian zone and the Sudanian zone,except for leaf biomass equations.Both biomass allocation and carbon content varied significantly between tree components but not between climatic zones.Carbon content in tree components followed the patterns of biomass allocation with branches accounting for the highest proportion.In the two climatic zones,carbon contents were 50.18–52.62%for leaves,54.78–54.94%for stems and 54.96–55.99%for branches.Dry biomass ranged from 509.05 to 765.56 kg tree^-1 at site level and from 620.21 to 624.48 kg tree^-1 along climatic zones.Carbon content varied from 53.90%in the Sudano-sahelian zone to 54.39%in the Sudanian zone.This study indicated that climate does not influence aboveground biomass production and carbon sequestration of Afzelia africana along the Sudanosahelian and the Sudanian climatic zones of Burkina Faso.Future studies on climate–growth relationships should contribute to better understanding climate effects on biomass production and carbon storage.
基金the National Basic Research Program of China (2010CB833504)the CAS Strategic Priority Research Program (XDA05050600)the National Natural Science Foundation of China (30590381)
文摘Forests play an important role in mitigating climate change by absorbing carbon from atmosphere. The global forests sequestrated 2.4±0.4 Pg C y^-1 from 1990 to 2007, while the quantitative assessment on the carbon sequestration potential (CSP) of global forests has much uncertainty. We collected and compiled a database of site above-ground biomass (AGB) of global mature forests, and obtained AGB carbon carrying capacity (CCC) of global forests by interpolating global mature forest site data. The results show that: (i) at a global scale, the AGB of mature forests decline mainly from tropical forests to boreal forests, and the maximum AGB occurs in middle latitude regions; (ii) temperature and precipitation are main factors influencing the AGB of mature forests; and (iii) the above-ground biomass CCC of global forests is about 586.2±49.3 Pg C, and with CSP of 313.4 Pg C. Therefore, achieving CCC of the existing forests by reducing human disturbance is an option for mitigating greenhouse gas emission.
基金the National Natural Science Foundation of China(No.31971497)by“Young Scholar"funding from Yunnan Province.
文摘Microbial carbon use efficiency(CUE)affects the soil C cycle to a great extent,but how soil organisms and the abiotic environment combine to influence CUE at a regional scale remains poorly understood.In the current study,microcosms were used to investigate how microbial respiration,biomass,and CUE responded to biotic and abiotic factors in natural tropical,subtropical,and temperate forests.Soil samples from the forests were collected,sterilized,and populated with one or a combination of three types of soil organisms(the fungus Botrytis cinerea,the bacterium Escherichia coli,and the nematode Caenorhabditis elegans).The microcosms were then kept at the mean soil temperatures of the corresponding forests.Microbial respiration,biomass,and CUE were measured over one-month incubation period.The results showed that microbial biomass and CUE were significantly higher,but microbial respiration lower in the subtropical and temperate forest soils than in tropical forest soil.Biotic factors mainly affected CUE by their effect on microbial biomass,while temperature affected CUE by altering respiration.Our results indicate that temperature regulates the interactive effects of soil organisms on microbial biomass,respiration,and CUE,which would provide a basis for understanding the soil C cycle in forest ecosystems.
基金supported by the National Key R & D Program of China (Grant No. 2018YFA0605402)the National Natural Science Foundation of China (Grant Nos. 41601442 & 41807173)the Fundamental Research Funds for the Central Universities (Grant No. 2017B06814)
文摘Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abiotic and biotic factors have significant effects on WUE in forest ecosystems. However, responses of WUE to phenology in the context of climate change remain poorly understood. In this study, we analyzed the sensitivity and response patterns of seasonal WUE to phenology in Zhejiang Province where typical subtropical forest ecosystems are located, and discussed potential causes of the changes of the sensitivity and response patterns along different climate gradient during 2000–2014. The results of interannual partial correlation analysis showed widespread negative correlations between WUE and the start of growing season(SOS) in spring. This is because the increase in gross primary product(GPP) is larger than that of evapotranspiration(ET), resulting from an advanced SOS. The positive correlation between WUE and SOS was widely observed in summer mainly because of water stress and plant ecological strategy. The autumn WUE enhanced with the delay in the end of growing season(EOS)mainly because of the increase in GPP meanwhile the decrease or steadiness in ET, resulting from a delayed EOS. In space, the sensitivity of spring WUE to SOS significantly decreased along the radiation gradient, which might be related to strong soil evaporation in high radiation area;the sensitivity of WUE to SOS in summer showed a positive correlation with precipitation and a negative correlation with temperature, respectively, which might be attributed to the compensation of GPP to the delayed SOS and water stress caused by high temperature. The sensitivity of WUE to EOS increased significantly along the radiation and precipitation gradients in autumn, which may be because the increase of radiation and precipitation provides more water and energy for photosynthesis.