A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM...A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.展开更多
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast...A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.展开更多
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr...Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.展开更多
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc...Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).展开更多
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes ...The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).展开更多
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting...This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is superior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also, simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau’s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches more realistic results compared to a single GCM used.展开更多
In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CER...In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CERES; and in this model, crop type was further divided into winter wheat, spring wheat, spring maize, summer maize, early rice, late rice,single rice, and other crop types based on each distribution fraction. The development of each crop sub-type was simulated by the corresponding crop model separately, with each planting and harvesting date. A simulation test using RegCM4_CERES was conducted across China from 1999 to 2008; a control test was also performed using the original RegCM4. Data on crop LAI(leaf area index), soil moisture at 10 cm depth, precipitation, and 2 m air temperature were collected to evaluate the performance of RegCM4_CERES. The evaluation provided comparison of single-station time series, regional distributions,seasonal variations, and statistical indices for RegCM4_CERES. The results revealed that the coupled model had an excellent ability to simulate the phonological changes and spatial variations in crops. The consideration of dynamic crop development in RegCM4_CERES corrected the wet bias of the original RegCM4 over North China and the cold bias over South China.However, the degree of improvement was minimal and the statistical indices for RegCM4_CERES were roughly the same as the original RegCM4.展开更多
The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed u...The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future.展开更多
This study aims to evaluate the performance of the individual Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) and the ensemble average of the four RCMs to feign the ...This study aims to evaluate the performance of the individual Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) and the ensemble average of the four RCMs to feign the characteristics of the rainfall pattern for the Mbarali River catchment in Rufiji Basin for the period of 1979 to 2005. Statistical analysis for model performance such as Root mean square error, Mean error, Pearson correlation coefficient, Mean, Median, standard deviation and trend analysis are used. In addition to the statistical measure of model performance, the models are tested on their ability to capture the observed annual cycles and interannual variability of rainfall. Results indicated that the RCMs from the CORDEX indicated a better performance to reproduce the rainfall characteristics over Mbarali River catchment in Rufiji Basin. They reproduced fairly the Era Interim annual cycle and inter-annual variability of rainfall. The ensemble average performed better than individual models in representing rainfall over Mbarali River catchment in Rufiji Basin. These suggest that rainfall simulation from the ensemble average will be used for the assessment of the hydrological impact studies over Mbarali River catchment in Rufiji Basin.展开更多
A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was c...A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was carried out and compared with observations and the original RegCM3 model to compre- hensively evaluate its performance in simulating the regional climate over continental China. The results showed that RegCM3_CERES reproduced the regional climate at a resolution of 60 km over China by using ERA40 data as the boundary conditions, albeit with some limitations. The model captured the basic char- acteristics of the East Asian circulation, the spatial distribution of mean precipitation and temperature, and the daily characteristics of precipitation and temperature. However, it underestimated both the intensity of the monsoon in the monsoonal area and precipitation in southern China, overestimated precipitation in northern China, and produced a systematic cold temperature bias over most of continental China. Despite these limitations, it was concluded that the RegCM3_CERES model is able to simulate the regional climate over continental China reasonably well.展开更多
Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land ...Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land Surface Model (LSM) to illustrate the skill of the coupled model (Polar MM5+LSM) in simulating atmospheric circulation over the Arctic river basins. Near-surface and upper-air observations were used to verify the simulations. Sensitivity studies between the Polar MM5 and Polar MM5+LSM simulations revealed that the coupled model could improve the forecast skill for surface variables at some sites. In addition, the extended evaluations of the coupled model simulations on the North American Arctic domain during December 15, 2002 to May 15, 2003 were carried out. The time series plots and statistics of the observations and Polar MM5+LSM simulations at six stations for near-surface and vertical profiles at 850 hPa and 500 hPa were analyzed. The model was found capable of reproducing the observed atmospheric behavior in both magnitude and variability, especially for temperature and near-surface wind direction.展开更多
Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter...Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.展开更多
Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model...Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.展开更多
Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). T...Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.展开更多
Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a...Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108.展开更多
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p...A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.展开更多
This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studi...This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.展开更多
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ...Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.展开更多
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC freq...This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.展开更多
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, i...A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.展开更多
文摘A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.
文摘A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant No. 40205012, and 40201048, the Chinese NKBRSF Project G1999043400 and the Foundation of the China Ministry of Education (Grant No. 20010284027). The computat
文摘Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41375104)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation).
基金`This study was supported by the National Key Research and Development Program of China(Grant No.2019YFA0606903)the National Natural Science Foundation of China(Grant No.42075162)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090102).
文摘The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).
基金This work was supported by the National Natural Science Foundation of China under Grant No.49735170.
文摘This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is superior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also, simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau’s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches more realistic results compared to a single GCM used.
基金financially supported by the National Key R&D Program of China (Grant No. 2017 YFA0603702)the National Natural Science Foundation (Grant Nos. 41705046, 41606112 and 41571019)the Key Research and Development Program of Shandong Province of China (Grant No. 2016JMRH0538)
文摘In this study, the CERES(Crop Estimation through Resource and Environment Synthesis) crop model was coupled with CLM3.5, the land module of the regional climate model RegCM4. The new coupled model was named RegCM4_CERES; and in this model, crop type was further divided into winter wheat, spring wheat, spring maize, summer maize, early rice, late rice,single rice, and other crop types based on each distribution fraction. The development of each crop sub-type was simulated by the corresponding crop model separately, with each planting and harvesting date. A simulation test using RegCM4_CERES was conducted across China from 1999 to 2008; a control test was also performed using the original RegCM4. Data on crop LAI(leaf area index), soil moisture at 10 cm depth, precipitation, and 2 m air temperature were collected to evaluate the performance of RegCM4_CERES. The evaluation provided comparison of single-station time series, regional distributions,seasonal variations, and statistical indices for RegCM4_CERES. The results revealed that the coupled model had an excellent ability to simulate the phonological changes and spatial variations in crops. The consideration of dynamic crop development in RegCM4_CERES corrected the wet bias of the original RegCM4 over North China and the cold bias over South China.However, the degree of improvement was minimal and the statistical indices for RegCM4_CERES were roughly the same as the original RegCM4.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955401)the Special Fund for Public Welfare Industry (Grant No. GYHY201306026)the Key Laboratory of Oasis Ecology (KLOE) Open Fund (Grant No. XJDX02012012-04)
文摘The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future.
文摘This study aims to evaluate the performance of the individual Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) and the ensemble average of the four RCMs to feign the characteristics of the rainfall pattern for the Mbarali River catchment in Rufiji Basin for the period of 1979 to 2005. Statistical analysis for model performance such as Root mean square error, Mean error, Pearson correlation coefficient, Mean, Median, standard deviation and trend analysis are used. In addition to the statistical measure of model performance, the models are tested on their ability to capture the observed annual cycles and interannual variability of rainfall. Results indicated that the RCMs from the CORDEX indicated a better performance to reproduce the rainfall characteristics over Mbarali River catchment in Rufiji Basin. They reproduced fairly the Era Interim annual cycle and inter-annual variability of rainfall. The ensemble average performed better than individual models in representing rainfall over Mbarali River catchment in Rufiji Basin. These suggest that rainfall simulation from the ensemble average will be used for the assessment of the hydrological impact studies over Mbarali River catchment in Rufiji Basin.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41105062 and 91125016)the National Basic Research Program (Grant Nos. 2010CB951001 and 2010CB428403)
文摘A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was carried out and compared with observations and the original RegCM3 model to compre- hensively evaluate its performance in simulating the regional climate over continental China. The results showed that RegCM3_CERES reproduced the regional climate at a resolution of 60 km over China by using ERA40 data as the boundary conditions, albeit with some limitations. The model captured the basic char- acteristics of the East Asian circulation, the spatial distribution of mean precipitation and temperature, and the daily characteristics of precipitation and temperature. However, it underestimated both the intensity of the monsoon in the monsoonal area and precipitation in southern China, overestimated precipitation in northern China, and produced a systematic cold temperature bias over most of continental China. Despite these limitations, it was concluded that the RegCM3_CERES model is able to simulate the regional climate over continental China reasonably well.
基金Supported by the Polar Stratagem Fund of China (No.JD07-6).
文摘Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land Surface Model (LSM) to illustrate the skill of the coupled model (Polar MM5+LSM) in simulating atmospheric circulation over the Arctic river basins. Near-surface and upper-air observations were used to verify the simulations. Sensitivity studies between the Polar MM5 and Polar MM5+LSM simulations revealed that the coupled model could improve the forecast skill for surface variables at some sites. In addition, the extended evaluations of the coupled model simulations on the North American Arctic domain during December 15, 2002 to May 15, 2003 were carried out. The time series plots and statistics of the observations and Polar MM5+LSM simulations at six stations for near-surface and vertical profiles at 850 hPa and 500 hPa were analyzed. The model was found capable of reproducing the observed atmospheric behavior in both magnitude and variability, especially for temperature and near-surface wind direction.
基金supported by the SFB/TR172 “Arctic Amplification:Climate Relevant Atmospheric and Surface Processes,and Feedback Mechanisms (AC)” funded by the Deutsche Forschungsgemeinschaft (DFG)supported by the project QUARCCS “Quantifying Rapid Climate Change in the Arctic:Regional feedbacks and large-scale impacts” funded by the German Federal Ministry for Education and Research (BMBF)
文摘Ensemble simulations with the Arctic coupled regional climate model HIRHAM-NAOSIM have been analyzed to investigate atmospheric feedbacks to September sea-ice anomalies in the Arctic in autumn and the following winter. Different "low- minus high ice" composites have been calculated using selected model runs and different periods. This approach allows us to investigate the robustness of the simulated regional atmospheric feedbacks to detected sea-ice anomalies. Since the position and strength of the September sea-ice anomaly varies between the different "low- minus high ice" composites, the related simulated atmospheric patterns in autumn differ depending on the specific surface heat flux forcing through the oceaaa-atmosphere interface. However, irrespective of those autumn differences, the regional atmospheric feedback in the following winter is rather insensitive to the applied compositing. Neither the selection of simulations nor the considered period impacts the results. The simulated consistent large-scale atmospheric circulation pattern show-s a wave-like pattern with positive pressure anomaly over the region of the Barents/Kara Seas and Scandinavia/western Russia ("Scandinavian-Ural blocking") and negative pressure anomaly over the East Siberian/Laptev Seas.
基金Thanks are due to CSIRO in Australia and the Institute of Botany,Chinese Academy of Sciences,National Climate Center of China , for providing the data sets of the GCM and the vegetation coverThis research was supported by the National Natural Science Foundation of China under Grant No, 40125014National Key Programme for Developing Basic Sciences (G1998040900-part 1).
文摘Changes of extreme events due to greenhouse effects (2 × CO<SUB>2</SUB>) over East Asia, with a focus on the China region as simulated by a regional climate model (RegCM2), are investigated. The model is nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM). Analysis of the control run of the regional model indicates that it can reproduce well the extreme events in China. Statistically significant changes of the events are analyzed. Results show that both daily maximum and daily minimum temperature increase in 2 × CO<SUB>2</SUB> conditions, while the diurnal temperature range decreases. The number of hot spell days increases while the number of cold spell days decreases. The number of rainy days and heavy rain days increases over some sub-regions of China. The 2 × CO<SUB>2</SUB> conditions also cause some changes in the tropical storms affecting China.
文摘Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.
基金This research was supported by National Key Programme for Developing Basic Sciences(G1998040900 - Part I) Chinese Academy of
文摘Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108.
基金Research supported by the National Key Program for Developing Basic Sciences(2006CB400506) of China Climate Change Study Fund of the China Meteorological Administration(CCSF2008-8)
文摘A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
基金Under the jointly auspices of the Special Public Research for Meteorological Industry (No. GYHY200806009)Wind Energy Resources Detailed Survey and Assessment WorkEU-China Energy and Environment Program (No. Europe Aid/ 123310/D/Ser/CN)
文摘This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.
文摘Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.
基金funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015–2083
文摘This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.
文摘A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.