期刊文献+
共找到4,188篇文章
< 1 2 210 >
每页显示 20 50 100
The Cloud Model for Climate Change
1
作者 Michael Nelson David B. Nelson 《International Journal of Geosciences》 CAS 2024年第5期366-395,共30页
In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model... In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably. 展开更多
关键词 climate Change Greenhouse Gas CO2 CLOUDS model THERMODYNAMICS
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
2
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Modeling Study of the Evolution of the Climate Crisis over Time
3
作者 Victor Rogelio Tirado Picado 《Open Journal of Applied Sciences》 2024年第2期330-342,共13页
The research proposal has the following scope. In relation to the general objective, the aim is to model the evolution of the climate crisis over time taking as variables global warming, greenhouse gases, atmospheric ... The research proposal has the following scope. In relation to the general objective, the aim is to model the evolution of the climate crisis over time taking as variables global warming, greenhouse gases, atmospheric temperature and ocean temperature, as well as the continuity of the natural phenomena in terms of their measurement, temporality and projection. To achieve the above, the description of the following specific objectives is proposed: - Identify the variables corresponding to the climate crisis, their relationship and correlation between them;- Develop projection models with mathematical and statistical arrangements to project them in a given time and, in this way, - Propose mitigation measures for different unfavorable scenarios. The main variables that are currently directly linked to Climate Change are: CO<sub>2</sub>, the atmospheric index, precipitation, temperature and wind speed. The correlation that exists between climatic elements is very high, both in historical behavior and projected behavior for 2035, their correlation is estimated at 0.90, 0.95, 0.93 and 91 respectively. The mathematical models used to manipulate the historical and projected analysis of the variables studied: are the normal arrangements, this ensures that the values can be used on a common scale;Then there is the analysis of the historical variables using the linear trend, and finally there is the analysis of the variables projected to the year 2035 using the polynomial trend. In both situations, the direct relationship of greenhouse gases, mainly CO<sub>2</sub>, is directly related to the variations of the variables over time, which is a very worrying result because we can no longer talk about climate change, but rather about CLIMATE CRISIS. To a large extent, a change in the paradigm of exploitation of the resources of our mother earth is required. Alert in an SOS manner to the great powers, which make reasonable use of technology, for this attenuation measures are proposed. 展开更多
关键词 climate Crisis model Climatic Factors EVOLUTION TEMPERATURE
下载PDF
Global Well-Posedness of the Fractional Tropical Climate Model
4
作者 Meiqi Hu 《Journal of Applied Mathematics and Physics》 2024年第3期805-818,共14页
In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the ... In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system. 展开更多
关键词 Tropical climate model Fractional Diffusion Global Existence
下载PDF
The CMIP6 Historical Simulation Datasets Produced by the Climate System Model CAMS-CSM 被引量:2
5
作者 Xinyao RONG Jian LI +4 位作者 Haoming CHEN Jingzhi SU Lijuan HUA Zhengqiu ZHANG Yufei XIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第2期285-295,共11页
This paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences(CAMS)climate system model(CAMS-CSM),which are contributing to phase 6 of the Coupled Model Intercomparison Pro... This paper describes the historical simulations produced by the Chinese Academy of Meteorological Sciences(CAMS)climate system model(CAMS-CSM),which are contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6).The model description,experiment design and model outputs are presented.Three members’historical experiments are conducted by CAMS-CSM,with two members starting from different initial conditions,and one excluding the stratospheric aerosol to identify the effect of volcanic eruptions.The outputs of the historical experiments are also validated using observational data.It is found that the model can reproduce the climatological mean states and seasonal cycle of the major climate system quantities,including the surface air temperature,precipitation,and the equatorial thermocline.The long-term trend of air temperature and precipitation is also reasonably captured by CAMS-CSM.There are still some biases in the model that need further improvement.This paper can help the users to better understand the performance and the datasets of CAMS-CSM. 展开更多
关键词 CMIP6 historical simulation CAMS-csm climate system model data description
下载PDF
Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model 被引量:2
6
作者 袁东亮 徐鹏 徐腾飞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第1期23-38,共16页
An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the... An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole(IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes. 展开更多
关键词 赤道东太平洋 热带印度洋 评估模型 动力学相 可预测性 耦合系统 海洋 通道
下载PDF
基于改进CSM模型的硬岩掘进机刀盘危险点应力分析方法
7
作者 刘建琴 吴迪 +2 位作者 徐攀 乔金丽 郭伟 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2024年第3期283-290,共8页
TBM刀盘受载后的危险点应力获取缺少直接的测量方法,工况复杂的情况下也难以测量,这就制约了刀盘载荷分析在刀盘寿命分析及其再制造方向上的应用问题,为此本文提出了一种基于改进CSM模型的TBM刀盘危险点应力分析方法.在CSM模型基本压力... TBM刀盘受载后的危险点应力获取缺少直接的测量方法,工况复杂的情况下也难以测量,这就制约了刀盘载荷分析在刀盘寿命分析及其再制造方向上的应用问题,为此本文提出了一种基于改进CSM模型的TBM刀盘危险点应力分析方法.在CSM模型基本压力假设的基础上,提出了滚刀刀刃侧面基本压力的概念,推导计算了滚刀刀刃侧面受到的压力和摩擦力,并将二者逐个引入CSM模型中的三向力的计算,建立了改进的CSM模型;通过与公开的滚刀载荷实验数据对比,计算得到的三向力误差均在5%以内,弥补了CSM模型不能预测侧向力的不足.基于改进的CSM模型,通过分析滚刀载荷三向力的差值关系,建立了滚刀载荷差值与滚刀刀间距离的指数关系,得到了计算刀盘滚刀载荷的理论模型,使用ABAQUS的实体耦合功能,加载上各滚刀的载荷,分析整个刀盘的载荷分布,进一步获得刀盘危险点的位置.由此建立了一套刀盘滚刀群载荷获取及危险点应力分布计算的方法.通过与辽宁大伙房水库引水隧道工程中公开的实验数据及危险点统计数据对比,验证了基于改进CSM模型的TBM刀盘危险点应力计算方式的有效性.该研究对经典的CSM模型进行了改进,所提出的刀盘危险点的应力分析方法可为刀盘再制造寿命预测提供可靠的载荷分析依据,并指导刀盘服役阶段的操控参数设置. 展开更多
关键词 TBM刀盘 改进csm模型 危险点应力 侧向力
下载PDF
An Introduction to the Integrated Climate Model of the Center for Monsoon System Research and Its Simulated Influence of El Ni?no on East Asian–Western North Pacific Climate 被引量:5
8
作者 HUANG Ping WANG Pengfei +4 位作者 HU Kaiming HUANG Gang ZHANG Zhihua LIU Yong YAN Bangliang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1136-1146,共11页
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Res... This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate. 展开更多
关键词 Integrated climate model (ICM) global climate model E1 Nifio East Asian climate
下载PDF
The FGOALS climate system model as a modeling tool for supporting climate sciences:An overview 被引量:7
9
作者 TianJun Zhou Bin Wang +18 位作者 YongQiang Yu YiMin Liu WeiPeng Zheng LiJuan Li Bo Wu PengFei Lin Zhun Guo WenMin Man Qing Bao AnMin Duan HaiLong Liu XiaoLong Chen Bian He JianDong Li LiWei Zou XiaoCong Wang LiXia Zhang Yong Sun WenXia Zhang 《Earth and Planetary Physics》 2018年第4期276-291,共16页
Climate system models are useful tools for understanding the interactions among the components of the climate system and predicting/projecting future climate change. The development of climate models has been a centra... Climate system models are useful tools for understanding the interactions among the components of the climate system and predicting/projecting future climate change. The development of climate models has been a central focus of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences(LASG/IAP) since the establishment of the laboratory in 1985. In China, many pioneering component models and fully coupled models of the climate system have been developed by LASG/IAP. The fully coupled climate system developed in the recent decade is named FGOALS(Flexible Global Ocean-Atmosphere-Land System Model). In this paper, an application-oriented review of the LASG/IAP FGOALS model is presented. The improved model performances are demonstrated in the context of cloud-radiation processes, Asian monsoon, ENSO phenomena, Atlantic Meridional Overturning Circulation(AMOC) and sea ice. The FGOALS model has contributed to both CMIP5(Coupled Model Intercomparison Project-phase 5) and IPCC(Intergovernmental Panel on Climate Change) AR5(the Fifth Assessment Report). The release of FGOALS data has supported the publication of nearly 500 papers around the world. The results of FGOALS are cited ~106 times in the IPCC WG1(Working Group 1) AR5. In addition to the traditional long-term simulations and projections, near-term decadal climate prediction is a new set of CMIP experiment, progress of LAGS/IAP in the development of nearterm decadal prediction system is reviewed. The FGOALS model has supported many Chinese national-level research projects and contributed to the national climate change assessment report. The crucial role of FGOALS as a modeling tool for supporting climate sciences is highlighted by demonstrating the model's performances in the simulation of the evolution of Earth's climate from the past to the future. 展开更多
关键词 climate system model FGOALS climate VARIABILITY climate CHANGE
下载PDF
Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-gl Climate System Model 被引量:6
10
作者 张洁 Laurent LI +1 位作者 周天军 辛晓歌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期699-712,共14页
A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses t... A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the ant hropogenic- forcing-dominant period. 展开更多
关键词 last millennium external forcing surface temperature cloud radiative forcing climate system model
下载PDF
The El Ni?o-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences 被引量:6
11
作者 SU Tonghua XUE Feng +1 位作者 SUN Hongchuan ZHOU Guangqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期55-65,共11页
On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, i... On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacif- ic, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the E1 Nino onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster develop- ment of an E1 Nino. During the decay stage, owing to a stronger E1Nino in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an E1 Nino decays into a La Nina through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attribut- ed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean. 展开更多
关键词 climate system model of Chinese Academy of Sciences E1 Nifio-Southern Oscillation cycle E1Nifio THERMOCLINE wind stress
下载PDF
Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model(NESM) 被引量:10
12
作者 CAO Jian Bin WANG +5 位作者 Baoqiang XIANG Juan LI WU Tianjie Xiouhua FU WU Liguang MIN Jinzhong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期585-600,共16页
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nu... A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO. 展开更多
关键词 coupled climate model earth system model climate variability
下载PDF
Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling
13
作者 PAN Song PENG De-liang +4 位作者 LI Ying-mei CHEN Zhi-jie ZHAI Ying-yan LIU Chen HONG Bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2138-2150,共13页
In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environm... In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode. 展开更多
关键词 Meloidogyne enterolobii species distribution model MAXENT climate change future climate scenarios centroid change
下载PDF
Climate Change Impacts and Adaptation in Rainfed Farming Systems: A Modeling Framework for Scaling-Out Climate Smart Agriculture in Sub-Saharan Africa 被引量:3
14
作者 Berhanu F. Alemaw Timothy Simalenga 《American Journal of Climate Change》 2015年第4期313-329,共17页
Improving agricultural water productivity, under rainfed or irrigated conditions, holds significant scope for addressing climate change vulnerability. It also offers adaptation capacity needs as well as water and food... Improving agricultural water productivity, under rainfed or irrigated conditions, holds significant scope for addressing climate change vulnerability. It also offers adaptation capacity needs as well as water and food security in the southern African region. In this study, evidence for climate change impacts and adaptation strategies in rainfed agricultural systems is explored through modeling predictions of crop yield, soil moisture and excess water for potential harvesting. The study specifically presents the results of climate change impacts under rainfed conditions for maize, sorghum and sunflower using soil-water-crop model simulations, integrated based on daily inputs of rainfall and evapotranspiration disaggregated from GCM scenarios. The research targets a vast farming region dominated by heavy clay soils where rainfed agriculture is a dominant practice. The potential for improving soil water productivity and improved water harvesting have been explored as ways of climate change mitigation and adaptation measures. This can be utilized to explore and design appropriate conservation agriculture and adaptation practices in similar agro-ecological environments, and create opportunities for outscaling for much wider areas. The results of this study can suggest the need for possible policy refinements towards reducing vulnerability and adaptation to climate change in rainfed farming systems. 展开更多
关键词 climate Change ADAPTATION RAINFED Farming systems A modeling climate SMART AGRICULTURE Southern Africa
下载PDF
Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation 被引量:1
15
作者 WANG Shuang-Jing CAO Long LI Na 《Advances in Climate Change Research》 SCIE 2014年第3期123-130,共8页
Based on simulations using the University of Victoria's Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 fol... Based on simulations using the University of Victoria's Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic's ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean's ability to absorb CO2 from the atmosphere. 展开更多
关键词 climate change OCEAN CARBON CYCLE CARBON CYCLE modeling
下载PDF
Antarctic Sea Ice Concentration in the Brazilian Earth System Model Simulations
16
作者 Fernanda Casagrande Elisângela Finotti +2 位作者 Ronald Buss de Souza Regiane Moura Noeli Franchi Leonardo 《Journal of Geoscience and Environment Protection》 2023年第9期1-19,共19页
Sea ice is an important and complex component of the Earth’s system, acting as both an indicator and an amplifier of climate change. Here, we investigated the ability of the Brazilian Earth System Model (BESM-OA2.5) ... Sea ice is an important and complex component of the Earth’s system, acting as both an indicator and an amplifier of climate change. Here, we investigated the ability of the Brazilian Earth System Model (BESM-OA2.5) and four state-of-the-art climate models participating in the fifth phase of the Coupled Model Intercomparison Project, Version 5 (CMIP5) to represent the Antarctic Sea Ice Concentration (SIC) seasonal cycle. We validated the sea ice model’s performance using satellite data from 1980 to 2005 and calculated the skill and RMSE of each model. BESM-OA2.5 results for melt-freeze transitions in the Southern Ocean are consistent with CMIP5 models and satellite data. In February, when the sea ice reaches its annual minimum, the BESM-OA2.5 has the best fit among the models. However, in September, when the Antarctic sea ice reaches its annual maximum, the SIC simulated by BESM-OA2.5 indicated the largest area covered by ice compared to satellite, particularly on the Polar Front. Similar results were found in the CMIP5 models evaluated here. We suggest that the large bias simulated in the Polar Front is related to the inability of the sea ice model to represent the complex ocean-atmosphere-sea ice interactions. The subject is considered a hot topic in climate change studies and lacks conclusive answers. 展开更多
关键词 Southern Ocean climate models SATELLITE CMIP5 Simulations climate Validation
下载PDF
Flood Forecasting and Warning System: A Survey of Models and Their Applications in West Africa
17
作者 Mohamed Fofana Julien Adounkpe +5 位作者 Sam-Quarco Dotse Hamadoun Bokar Andrew Manoba Limantol Jean Hounkpe Isaac Larbi Adama Toure 《American Journal of Climate Change》 2023年第1期1-20,共20页
Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events aft... Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life. 展开更多
关键词 Flood Forecasting Hydrological models climate Change WEST
下载PDF
Rainfall-Runoff Modeling and Hydrological Responses to the Projected Climate Change for Upper Baro Basin, Ethiopia
18
作者 Teressa Negassa Muleta Knolmár Marcell 《American Journal of Climate Change》 2023年第2期219-243,共25页
This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-H... This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R<sup>2</sup>) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin. 展开更多
关键词 climate Change Flow Simulation HEC-HMS Rainfall-Runoff modeling Upper Baro Basin
下载PDF
Preliminary assessment on the hindcast skill of the Arctic Oscillation with decadal experiment by the BCC_CSM1.1 climate model 被引量:1
19
作者 WU Li-Quan LI Qing-Quan +3 位作者 DING Yi-Hui WANG Li-Juan XIN Xiao-Ge WEI Min 《Advances in Climate Change Research》 SCIE CSCD 2018年第4期209-217,共9页
The prediction skill of Arctic Oscillation (AO) in the decadal experiments with the Beijing Climate Center Climate System Model version 1.1 (BCC_CSM1.1) is assessed. As compared with the observations and historical ex... The prediction skill of Arctic Oscillation (AO) in the decadal experiments with the Beijing Climate Center Climate System Model version 1.1 (BCC_CSM1.1) is assessed. As compared with the observations and historical experiments, the contribution of initialization for climate model to predict the seasonal scale AO and its interannual variations is estimated. Results show that the spatial correlation coefficient of AO mode simulated by the decadal experiment is higher than that in the historical experiment. The two groups of experiments reasonably reproduce the characteristics that AO indices are the strongest in winter and the weakest in summer. Compared with historical experiments, the correlation coefficient of the monthly and winter AO indices are higher in the decadal experiments. In particular, the correlation coefficient of monthly AO index between decadal hindcast and observation reached 0.1 significant level. Furthermore, the periodicity of the monthly and spring AO indices are achieved only in the decadal experiments. Therefore, the initial state of model is initialized by using sea temperature data may help to improve the prediction skill of AO in the decadal prediction experiments to some extent. 展开更多
关键词 BCC_csm1.1 climate model DECADAL ARCTIC oscillation HINDCAST
下载PDF
Introduction of CMIP5 Experiments Carried out with the Climate System Models of Beijing Climate Center 被引量:16
20
作者 XIN Xiao-Ge WU Tong-Wen ZHANG Jie 《Advances in Climate Change Research》 SCIE 2013年第1期41-49,共9页
The climate system models from Beijing Climate Center, BCC_CSM1.1 and BCC_CSM1.1-M, are used to carry out most of the CMIP5 experiments. This study gives a general introduction of these two models, and provides main i... The climate system models from Beijing Climate Center, BCC_CSM1.1 and BCC_CSM1.1-M, are used to carry out most of the CMIP5 experiments. This study gives a general introduction of these two models, and provides main information on the experiments including the experiment purpose, design, and the external forcings. The transient climate responses to the CO2 concentration increase at 1% per year are presented in the simulation of the two models. The BCC_CSM1.1-M result is closer to the CMIP5 multiple models ensemble. The two models perform well in simulating the historical evolution of the surface air temperature, globally and averaged for China. Both models overestimate the global warming and underestimate the warming over China in the 20th century. With higher horizontal resolution, the BCC_CSM1.1-M has a better capability in reproducing the annual evolution of surface air temperature over China. 展开更多
关键词 气候系统模式 实验目的 北京 CO2浓度增加 模型仿真 全球变暖 水平分辨率 气候响应
下载PDF
上一页 1 2 210 下一页 到第
使用帮助 返回顶部