This research paper assesses the reality of Climate-Smart Agriculture(CSA)practices’potential to promote the outcomes of sustainable food systems(SFS)within Ghana’s smallholding agriculture context.The study demon-s...This research paper assesses the reality of Climate-Smart Agriculture(CSA)practices’potential to promote the outcomes of sustainable food systems(SFS)within Ghana’s smallholding agriculture context.The study demon-strates that rural farmers generally perceive CSA’s contribution to‘food and nutrition security’and‘economic performance’as more important than CSA’s contribution to‘social equity’and‘environmental stewardship’.From a narrow perspective,the study demonstrates that farmers perceive CSA’s potential to‘prevent pest and disease outbreaks’and‘increase human capital information’as the most important contribution of CSA to SFS outcomes.In contrast,CSA’s potential to promote environmental stewardship is perceived as the least important among Ghana’s rural farmers.This enormity of displacement of smallholders’perceptions at large is motivated by de-mographic,socioeconomic and ecological factors.Moreso,the CSA for SFS outcomes narratives is driven by farmers’self-apprise,social networks and other local information dissemination agents.Furthermore,research findings suggest farmers’awareness of CSA practices and interventions is deficient owing to unmet training and information needs for approximately 82%of the CSA practices and interventions.This situation elucidates the dichotomy of CSA practices’narratives as tools for attaining food,nutrition security and economic performance to the detriment of critical issues such as increasing awareness and building farmers’capacity to engage with CSA practices while also managing socio-ecological trade-offs that emerge over time due to engagement with CSA.Critical(re)orientation is needed across the scale to drive CSA practices and interventions that confine cli-mate adaptation and food production practices within safe planetary boundaries without undermining social,economic,food and nutrition security needs.展开更多
Studies on mainstreaming climate-smart agriculture(CSA)practices can increase smallholder farmers’capacity and awareness to improve food security and establish sustainable livelihoods through resilient agricultural s...Studies on mainstreaming climate-smart agriculture(CSA)practices can increase smallholder farmers’capacity and awareness to improve food security and establish sustainable livelihoods through resilient agricultural systems,while achieving adaptation and mitigation benefits.Hence,valuable insights can be obtained from smallholder farmers in responding to present and forthcoming challenges of climate change impacts.However,there is little research work on trade-off and synergy assessments.Taking Geshy watershed in Southwest Ethiopia as a case study area,both quantitative and qualitative data analysis were undertaken in this study.The data were collected from 15 key informant interviews,6 focus group discussions,and 384 households to answer the following questions:(1)what are the top 5 preferred CSA practices for smallholder farmers in Geshy watershed when coping with the impacts of climate change?(2)What is the performance of the preferred CSA practices?And(3)which trade-offs and synergies are experienced upon the implementation of CSA practices?The study came up with the most preferred CSA practices such as the use of improved crop varieties,small-scale irrigation,improved animal husbandry,the use of efficient inorganic fertilizers,and crop rotation with legumes.The selected CSA practices showed that the productivity goal exhibit the best synergy,while the mitigation goal has trade-offs.The study also indicated that the use of improved crop varieties causes high synergies in all 3 goals of CSA practices;small-scale irrigation provides a medium synergy on productivity goal but high synergy for adaptation and mitigation goals;improved animal husbandry shows a high synergy with the adaptation goal,a relatively lower synergy with the productivity goal,and a trade-off with the mitigation goal;the use of efficient inorganic fertilizers shows maximum synergy for the productivity and adaptation goals;and crop rotation with legumes exhibits high synergy with the productivity and mitigation goals but a relatively lower synergy with the adaptation goal.These results can provide evidence to various stakeholder farmers in the value chain that the impacts of climate change can be addressed by the adoption of CSA practices.In general,CSA practices are considered indispensable.Smallholder farmers prefer CSA practices that help to increase crop productivity and household resilience to climate change impacts.The results generate a vital foundation for recommendations to smallholder farming decision-makers.It also sensitizes actions for innovative and sustainable methods that are able to upscale the preferred CSA practices in the agricultural system in Geshy watershed of Southwest Ethiopia and other regions.展开更多
Background:The adoption of climate-smart agricultural(CSA)practices is expected to improve farmers’adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas(GHG)emissions.This ...Background:The adoption of climate-smart agricultural(CSA)practices is expected to improve farmers’adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas(GHG)emissions.This paper explores the determinants of smallholder farmers’participation in GHG-emitting activities.It also estimates the impact of CSA activities on reducing GHG emissions.Methods:The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana.We adopted the generalized Poisson regression model in identifying factors influencing farmers’participation in the GHG emission practices and inverse-probability-weighted regression adjustment(IPWRA)to estimate the impact of CSA adoption on GHG emissions.Results:Most farming households engaged in at least one emission activity.The findings of the generalized Poisson model found that wealthier households,higher education,and households with access to extension services were less likely to participate in GHG emission activities.There was also evidence that CSA adoption significantly reduces GHG emissions.Conclusion:Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.展开更多
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c...Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.展开更多
Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.展开更多
Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o...Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variatio...This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.展开更多
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag...Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.展开更多
Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by ...Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).展开更多
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything...Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.展开更多
Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta...Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.展开更多
Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still...Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.展开更多
The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil...The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.展开更多
Community-supported agriculture(CSA)has emerged as a viable solution for addressing the agricultural challenges faced by countries like Indonesia.This study uses the wellestablished unified theory of acceptance and us...Community-supported agriculture(CSA)has emerged as a viable solution for addressing the agricultural challenges faced by countries like Indonesia.This study uses the wellestablished unified theory of acceptance and use of technology(UTAUT2)model to examine the interest in CSA of potential customers in Indonesia.A standardized questionnaire was distributed to 1200 respondents,and the data were analyzed using structural equation model-partial least square(SEM-PLS)in SmartPLS 4.0 software.The results capture potential CSA consumer interest and will help to improve CSA development strategies in Indonesia.The model explains 44.4%of customers’intentions,and identifies performance expectancy as the decisive factor in customers’willingness to participate in CSA.Performance expectancy(0.292),hedonic motivation(0.262),social influence(0.259),and facilitating conditions(0.086)positively influence customers’interest in participating in a CSA program.The adoption of CSA programs by both farmers and customers could be increased by implementing regulations that provide tax incentives and subsidies,offering training on sustainable farming practices,facilitating the establishment of distribution channels,and establishing guidelines for fair price and quality standards.This study shows the high potential for the implementation of CSA in Indonesia.It could also be used as a foundation for the development of new policies regarding sustainable agriculture markets in Indonesia.展开更多
Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased ...Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased air pollution.Moreover,it indirectly supports communities during weather events and natural disasters,ensuring food security and fostering community cohesion.However,concerns about planetary health risks persist in highly urbanized and climate-affected areas.Employing electronic databases such as Web of Science and PubMed and adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,we identified 55 relevant papers to comprehend the planetary health risks associated with urban agriculture,The literature review identified five distinct health risks related to urban agriculture:(1)trace metal risks in urban farms;(2)health risks associated with wastewater irrigation;(3)zoonotic risks;(4)other health risks;and(5)social and economic risks.The study highlights that urban agriculture,while emphasizing environmental benefits,particularly raises concerns about trace metal bioaccumulation in soil and vegetables,posing health risks for populations.Other well studied risks included wastewater irrigation and backyard livestock farming.The main limitations in the available literature were in studying infectious diseases and antibiotic resistance associated with urban agriculture.展开更多
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ...Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.展开更多
With the continued increase in the number of people that are food insecure globally, which could be increasing because of the ongoing Ukraine-Russia war, leading to reduction in international agribusinesses, coupled w...With the continued increase in the number of people that are food insecure globally, which could be increasing because of the ongoing Ukraine-Russia war, leading to reduction in international agribusinesses, coupled with drastic climate change exacerbating the problem of food insecurity, there is a constant need to come up with innovative approaches to solve this global issue. In this article, we articulated how precision agriculture can be a tool for ensuring food security in the United States. This study aims to reiterate the significance of precision agriculture in solving global food insecurity.展开更多
William Moseley o!ers a critical examination of why Westernled agricultural policies have often fallen short in Sub-Saharan Africa.Supported with compelling analysis,he argues that these failures stem from a colonial-...William Moseley o!ers a critical examination of why Westernled agricultural policies have often fallen short in Sub-Saharan Africa.Supported with compelling analysis,he argues that these failures stem from a colonial-based agricultural science,which prioritises power and political agendas over the unique needs of African communities.To e!ectively address food security,Moseley calls for a shift towards an indigenous agronomy that supports small-scale farmers through social innovation and local knowledge.展开更多
基金PTQ receives funding from the Canada First Research Excellence Fund(Grant No.499077)and the Canada Research Chairs Program.
文摘This research paper assesses the reality of Climate-Smart Agriculture(CSA)practices’potential to promote the outcomes of sustainable food systems(SFS)within Ghana’s smallholding agriculture context.The study demon-strates that rural farmers generally perceive CSA’s contribution to‘food and nutrition security’and‘economic performance’as more important than CSA’s contribution to‘social equity’and‘environmental stewardship’.From a narrow perspective,the study demonstrates that farmers perceive CSA’s potential to‘prevent pest and disease outbreaks’and‘increase human capital information’as the most important contribution of CSA to SFS outcomes.In contrast,CSA’s potential to promote environmental stewardship is perceived as the least important among Ghana’s rural farmers.This enormity of displacement of smallholders’perceptions at large is motivated by de-mographic,socioeconomic and ecological factors.Moreso,the CSA for SFS outcomes narratives is driven by farmers’self-apprise,social networks and other local information dissemination agents.Furthermore,research findings suggest farmers’awareness of CSA practices and interventions is deficient owing to unmet training and information needs for approximately 82%of the CSA practices and interventions.This situation elucidates the dichotomy of CSA practices’narratives as tools for attaining food,nutrition security and economic performance to the detriment of critical issues such as increasing awareness and building farmers’capacity to engage with CSA practices while also managing socio-ecological trade-offs that emerge over time due to engagement with CSA.Critical(re)orientation is needed across the scale to drive CSA practices and interventions that confine cli-mate adaptation and food production practices within safe planetary boundaries without undermining social,economic,food and nutrition security needs.
文摘Studies on mainstreaming climate-smart agriculture(CSA)practices can increase smallholder farmers’capacity and awareness to improve food security and establish sustainable livelihoods through resilient agricultural systems,while achieving adaptation and mitigation benefits.Hence,valuable insights can be obtained from smallholder farmers in responding to present and forthcoming challenges of climate change impacts.However,there is little research work on trade-off and synergy assessments.Taking Geshy watershed in Southwest Ethiopia as a case study area,both quantitative and qualitative data analysis were undertaken in this study.The data were collected from 15 key informant interviews,6 focus group discussions,and 384 households to answer the following questions:(1)what are the top 5 preferred CSA practices for smallholder farmers in Geshy watershed when coping with the impacts of climate change?(2)What is the performance of the preferred CSA practices?And(3)which trade-offs and synergies are experienced upon the implementation of CSA practices?The study came up with the most preferred CSA practices such as the use of improved crop varieties,small-scale irrigation,improved animal husbandry,the use of efficient inorganic fertilizers,and crop rotation with legumes.The selected CSA practices showed that the productivity goal exhibit the best synergy,while the mitigation goal has trade-offs.The study also indicated that the use of improved crop varieties causes high synergies in all 3 goals of CSA practices;small-scale irrigation provides a medium synergy on productivity goal but high synergy for adaptation and mitigation goals;improved animal husbandry shows a high synergy with the adaptation goal,a relatively lower synergy with the productivity goal,and a trade-off with the mitigation goal;the use of efficient inorganic fertilizers shows maximum synergy for the productivity and adaptation goals;and crop rotation with legumes exhibits high synergy with the productivity and mitigation goals but a relatively lower synergy with the adaptation goal.These results can provide evidence to various stakeholder farmers in the value chain that the impacts of climate change can be addressed by the adoption of CSA practices.In general,CSA practices are considered indispensable.Smallholder farmers prefer CSA practices that help to increase crop productivity and household resilience to climate change impacts.The results generate a vital foundation for recommendations to smallholder farming decision-makers.It also sensitizes actions for innovative and sustainable methods that are able to upscale the preferred CSA practices in the agricultural system in Geshy watershed of Southwest Ethiopia and other regions.
文摘Background:The adoption of climate-smart agricultural(CSA)practices is expected to improve farmers’adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas(GHG)emissions.This paper explores the determinants of smallholder farmers’participation in GHG-emitting activities.It also estimates the impact of CSA activities on reducing GHG emissions.Methods:The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana.We adopted the generalized Poisson regression model in identifying factors influencing farmers’participation in the GHG emission practices and inverse-probability-weighted regression adjustment(IPWRA)to estimate the impact of CSA adoption on GHG emissions.Results:Most farming households engaged in at least one emission activity.The findings of the generalized Poisson model found that wealthier households,higher education,and households with access to extension services were less likely to participate in GHG emission activities.There was also evidence that CSA adoption significantly reduces GHG emissions.Conclusion:Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.
基金support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
文摘Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.
文摘Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘This study employs a quantitative approach to comprehensively investigate the full propagation process of agricultural drought, focusing on pigeon peas (the most grown crop in the AGS Basin) planting seasonal variations. The study modelled seasonal variabilities in the seasonal Standardized Precipitation Index (SPI) and Standardized Agricultural Drought Index (SADI). To necessitate comparison, SADI and SPI were Normalized (from −1 to 1) as they had different ranges and hence could not be compared. From the seasonal indices, the pigeon peas planting season (July to September) was singled out as the most important season to study agricultural droughts. The planting season analysis selected all years with severe conditions (2008, 2009, 2010, 2011, 2017 and 2022) for spatial analysis. Spatial analysis revealed that most areas in the upstream part of the Basin and Coastal region in the lowlands experienced severe to extreme agricultural droughts in highlighted drought years. The modelled agricultural drought results were validated using yield data from two stations in the Basin. The results show that the model performed well with a Pearson Coefficient of 0.87 and a Root Mean Square Error of 0.29. This proactive approach aims to ensure food security, especially in scenarios where the Basin anticipates significantly reduced precipitation affecting water available for agriculture, enabling policymakers, water resource managers and agricultural sector stakeholders to equitably allocate resources and mitigate the effects of droughts in the most affected areas to significantly reduce the socioeconomic drought that is amplified by agricultural drought in rainfed agriculture river basins.
文摘Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(AsC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIAis a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields.
文摘Instruction to Authors Aims and Scope Journal of Integrative Agriculture(JIA),formerlyAgricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).
文摘Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.
文摘Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects.
文摘Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.
文摘The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.
文摘Community-supported agriculture(CSA)has emerged as a viable solution for addressing the agricultural challenges faced by countries like Indonesia.This study uses the wellestablished unified theory of acceptance and use of technology(UTAUT2)model to examine the interest in CSA of potential customers in Indonesia.A standardized questionnaire was distributed to 1200 respondents,and the data were analyzed using structural equation model-partial least square(SEM-PLS)in SmartPLS 4.0 software.The results capture potential CSA consumer interest and will help to improve CSA development strategies in Indonesia.The model explains 44.4%of customers’intentions,and identifies performance expectancy as the decisive factor in customers’willingness to participate in CSA.Performance expectancy(0.292),hedonic motivation(0.262),social influence(0.259),and facilitating conditions(0.086)positively influence customers’interest in participating in a CSA program.The adoption of CSA programs by both farmers and customers could be increased by implementing regulations that provide tax incentives and subsidies,offering training on sustainable farming practices,facilitating the establishment of distribution channels,and establishing guidelines for fair price and quality standards.This study shows the high potential for the implementation of CSA in Indonesia.It could also be used as a foundation for the development of new policies regarding sustainable agriculture markets in Indonesia.
文摘Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased air pollution.Moreover,it indirectly supports communities during weather events and natural disasters,ensuring food security and fostering community cohesion.However,concerns about planetary health risks persist in highly urbanized and climate-affected areas.Employing electronic databases such as Web of Science and PubMed and adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,we identified 55 relevant papers to comprehend the planetary health risks associated with urban agriculture,The literature review identified five distinct health risks related to urban agriculture:(1)trace metal risks in urban farms;(2)health risks associated with wastewater irrigation;(3)zoonotic risks;(4)other health risks;and(5)social and economic risks.The study highlights that urban agriculture,while emphasizing environmental benefits,particularly raises concerns about trace metal bioaccumulation in soil and vegetables,posing health risks for populations.Other well studied risks included wastewater irrigation and backyard livestock farming.The main limitations in the available literature were in studying infectious diseases and antibiotic resistance associated with urban agriculture.
文摘Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.
文摘With the continued increase in the number of people that are food insecure globally, which could be increasing because of the ongoing Ukraine-Russia war, leading to reduction in international agribusinesses, coupled with drastic climate change exacerbating the problem of food insecurity, there is a constant need to come up with innovative approaches to solve this global issue. In this article, we articulated how precision agriculture can be a tool for ensuring food security in the United States. This study aims to reiterate the significance of precision agriculture in solving global food insecurity.
文摘William Moseley o!ers a critical examination of why Westernled agricultural policies have often fallen short in Sub-Saharan Africa.Supported with compelling analysis,he argues that these failures stem from a colonial-based agricultural science,which prioritises power and political agendas over the unique needs of African communities.To e!ectively address food security,Moseley calls for a shift towards an indigenous agronomy that supports small-scale farmers through social innovation and local knowledge.