期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Changes in climatic variability and maize yield inNortheast China 被引量:1
1
作者 WU Jin-dong WANG Fu-tang(Chinese Academy of Meteorological Sciences, Beijing 100081, China) 《Journal of Geographical Sciences》 SCIE CSCD 1999年第3期236-247,共12页
The method linking general circulation models' (GCMs') outputs with crop growthsimulation models' inputs has been the first choice in the studies of impacts of climate change.Changes in climatic variabilit... The method linking general circulation models' (GCMs') outputs with crop growthsimulation models' inputs has been the first choice in the studies of impacts of climate change.Changes in climatic variability, however were not considered in most studies due to limitedknowledge concerned Changes in climatic means derived from a general circulation model DKRZOPYC were input into a stochastic weather generator WGEN run for synthetic daily climate scenarios.Monte Carlo stochastic sampling method was adopted to generate climate change scenarios withvarious possible climatic veriabilities. A dynamic simulation model for maize growth anddevelopment of MZMOD was used to assess the potenhal implication of the changes in both climaticmeans and variability nd the boacts of crop management in changing climate on maize productionin Northeast China. The results indicated that maize yield would be reduced to various degrees inmost of the sensitivity experiments of climatic variability associating with the shortening of theduration of phenological phase of different sowing dates. The Anpacts of the diverse distributions ofclimatic factors detetmined by multiple changes in climatic variability on maire production and itsvariation, however, are not identical and have distinct regional disparities. Yield reduction caused bychanges in climatic means may be alleviated or aggravated by didributions of certain climaticvariables in line with the corresponding climatic variability according to the sensitivity analyses.Consequently, the hypothesis keeping climatic variability constant in the traditional research imposesrestriction on the overall inveshgation of the impacts of climate change on maize production. 展开更多
关键词 climatic variability stochastic weather generator GCMs crop model
下载PDF
Agro-Climatic Risks Analysis in Climate Variability Context in Ségou Region
2
作者 Diop Amadou Barro Diakarya 《Open Journal of Statistics》 2023年第1期170-193,共24页
In the Sahel region, the population depends largely on rain-fed agriculture. In West Africa in particular, climate models turn out to be unable to capture some basic features of present-day climate variability. This s... In the Sahel region, the population depends largely on rain-fed agriculture. In West Africa in particular, climate models turn out to be unable to capture some basic features of present-day climate variability. This study proposes a contribution to the analysis of the evolution of agro-climatic risks in the context of climate variability. Some statistical tests are used on the main variables of the rainy season to determine the trends and the variabilities described by the data series. Thus, the paper provides a statistical modeling of the different agro-climatic risks while the seasonal variability of agro-climatic parameters was analyzed as well as their inter annual variability. The study identifies the probability distributions of agroclimatic risks and the characterization of the rainy season was clarified. 展开更多
关键词 Climate variability Agro-climatic Risks Seasonal Evolution variability Parameters Tests
下载PDF
Responses of Annual Variability of Vegetation NPP to Climate Variables Using Satellite Techniques in Gadarif State, Sudan
3
作者 Anwar Mohamedelhassan Bo Zhang +1 位作者 Abdelrahim E. Jahelnabi Eman M. Elhassan 《Journal of Geographic Information System》 2024年第2期136-147,共12页
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into... Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area. 展开更多
关键词 Climate Variables MODIS NPP Climate Change Correlation Coefficient Gadarif State Remote Sensing GIS Applications
下载PDF
Analysis of Extreme Temperature Variability in Rwanda
4
作者 Protais Seshaba Edouard Singirankabo Donat Nsabimana 《Journal of Atmospheric Science Research》 2024年第1期74-89,共16页
The temperature is one of the most important factors in weather and climate forecasting.Studying its behaviour is crucial to understanding climate variability,which could vary spatially and temporally at local,regiona... The temperature is one of the most important factors in weather and climate forecasting.Studying its behaviour is crucial to understanding climate variability,which could vary spatially and temporally at local,regional,and global scales.Several recent studies on air temperature findings show that the Earth’s near surface air temperature increased between 0.6℃ and 0.8℃ throughout the twentieth century.Using temperature records from ten meteorological stations,this study examined climate variability in Rwanda from the 1930s to 2014.The air temperature data were collected from Meteo Rwanda.Before making the analysis,the authors used software,such as Excel 2007 and INSTAT to control the quality of the raw data.The analysis of maxima and minima indicated that the trends of maximum air temperature were positive and significant at height meteorological stations,whereas the trends for minimum air temperature were found to be at 10 meteorological stations.For all parameters analysed,Kigali Airport meteorological station indicated the higher significance of the trends.The majority of meteorological stations showed an increase in both hot days and nights,confirming Rwanda’s warming over time.The analysis of average seasonal air temperature showed almost similar trends even though not all were significant.This similarity in trends could be attributed to the fact that Rwanda’s short and long dry seasons coincide with rainy seasons. 展开更多
关键词 Climate variability Air temperature Solar radiation Meteorological station
下载PDF
Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon 被引量:1
5
作者 Wen CHEN Renhe ZHANG +12 位作者 Renguang WU Zhiping WEN Liantong ZHOU Lin WANG Peng HU Tianjiao MA Jinling PIAO Lei SONG Zhibiao WANG Juncong LI Hainan GONG Jingliang HUANGFU Yong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第8期1429-1456,共28页
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i... Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability. 展开更多
关键词 Asian monsoon multi-scale climate variability monsoon onset East Asian summer monsoon East Asian winter monsoon Indian summer monsoon
下载PDF
Analysis of Hydro-Climatical Variability in the Mo Basin in Togo
6
作者 Koko Zébéto Houédakor Dametoti Yamoula 《Journal of Water Resource and Protection》 2021年第12期1043-1060,共18页
Climate changes are affecting water resources around the world and the Mo Basin (MB) in Togo is no exception to this observation. This study aims at analyzing the influence of hydro-climatical data in the Mo Basin. To... Climate changes are affecting water resources around the world and the Mo Basin (MB) in Togo is no exception to this observation. This study aims at analyzing the influence of hydro-climatical data in the Mo Basin. To achieve this, Pettit’s stationarity break tests, Hubert’s segmentation, Nicholson’s [1] reduced centered index, Lamb [2] and flow coefficients have been applied. In addition, temperature, precipitation, evapotranspiration, relative humidity and discharge data from 1961 to 2018 have been used for this purpose. While rainfall is decreasing despite an increase of 22.8% at the Fazao station and 2.8% at Sotouboua station, the flow coefficients evolve synchronously with the precipitation data and show a strong link between both parameters. The climatic balance sheet is positive six months in the year (May to October), throughout the period of observation (1961-2018). Only 1962 and 1963 recorded an annual rainfall greater than the annual evapotranspiration. The other years undergo a climatic drought, increasingly pronounced, which strongly impacts the hydrology of rivers. This has a strong impact on water resources and food security and resources of the Fazao-Malfakassa reserve in the region. 展开更多
关键词 Climate variability Hydro-climatic Balance Mo Basin TOGO
下载PDF
Indicator of climate variability:low treeline displacement in arid valleys of mountain areas,China
7
作者 YAN Wei-po WANG Qing +3 位作者 GUO Ya-lin HU Qi YANG Min AN Yi-da 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3250-3265,共16页
As climate change intensifies,finding an ecological indicator to quickly and accurately reflect the impact on mountain ecosystems is necessary.The low treeline/timberline,highly sensitive to climate variability and ch... As climate change intensifies,finding an ecological indicator to quickly and accurately reflect the impact on mountain ecosystems is necessary.The low treeline/timberline,highly sensitive to climate variability and changes significantly within 5–10years,provides a new way to study the response to regional climate variability.This study explored the distribution and vertical displacement patterns of the low treeline in the Upper Minjiang River of China,using SPOT remote sensing images in 1999 and 2013and long-term positional observations.Using the Geodetector model,the study investigated the dominant climatic factors influencing the low treeline displacement.The results showed that the low treeline was located at 1700–3200 m elevation on sunny slopes(southeast,south,southwest,and west slopes)with slopes over 25°.From 1999 to 2013,the low treeline moved downward by 6 m from 2561±264m to 2555±265 m,along with a warm–humid climate tendency.The downward displacement was greater on slopes over 25°and shady slopes(-20 m and-10 m,respectively)than on slopes≤25°and sunny slopes.Additionally,the downward was greater in the warm and humid Zagunao River Basin(-15 m)compared to the arid valley center(-7 m)and the cold Heishui River Basin(-3 m).Meanwhile,the low treeline displacement correlated negatively with precipitation and relative humidity variations at the significance level of 0.05,with correlation coefficients of-0.572and-0.551,respectively.Variations in relative humidity and temperature significantly affected the spatial differentiation of low treeline displacement with influencing power of 0.246(p=0.036<0.05)and 0.183(p=0.032<0.05),respectively.Thus,the low treeline is a moisture-limited line,and its formation and variation are closely related to regional water–heat balance.The study clarifies the indicative value of the low treeline for climate variability in mountain areas and can provide references for ecological restoration in arid valleys. 展开更多
关键词 Low treeline Moisture-limited line Climate variability Remote sensing interpretation Geo-detector Arid valley
下载PDF
The Influence of Climate Change and Variability on Spatio-Temporal Rainfall and Temperature Distribution in Zanzibar
8
作者 Abdalla Hassan Abdalla Kombo Hamad Kai +4 位作者 Sara Abdalla Khamis Afredy Lawrence Kondowe Sarah E. Osima Philemon Henry King’uza Asya Omar Hamad 《Atmospheric and Climate Sciences》 CAS 2023年第2期282-313,共32页
Climate change has resulted in serious social-economic ramifications and extremely catastrophic weather events in the world, Tanzania and Zanzibar in particular, with adaptation being the only option to reduce impacts... Climate change has resulted in serious social-economic ramifications and extremely catastrophic weather events in the world, Tanzania and Zanzibar in particular, with adaptation being the only option to reduce impacts. The study focuses on the influence of climate change and variability on spatio-temporal rainfall and temperature variability and distribution in Zanzibar. The station observation datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> acquired from Tanzania Meteorological Authority (TMA) and the Coordinated Regional Climate Downscaling Experiment program (CORDEX) projected datasets from the Regional climate model HIRHAM5 under driving model ICHEC-EC-EARH, for the three periods of 1991-2020 used as baseline (HS), 2021-2050 as near future (NF) and 2051-2080 far future (FF), under two representative concentration pathways (RCP) of 4.5 and 8.5, were used. The long-term observed T<sub>max</sub> and T<sub>min</sub> were used to produce time series for observing the nature and trends, while the observed rainfall data was used for understanding wet and dry periods, trends and slope (at p ≤ 0.05) using the Standardized Precipitation Index (SPI) and the Mann Kendall test (MK). Moreover, the Quantum Geographic Information System (QGIS) under the Inverse Distance Weighting (IDW) interpolation techniques were used for mapping the three decades of 1991-2000 (hereafter D1), 2001-2010 (hereafter D2) and 2011-2020 (hereafter D3) to analyze periodical spatial rainfall distribution in Zanzibar. As for the projected datasets the Climate Data Operator Commands (CDO), python scripts and Grid analysis and Display System (GrADS) soft-wares were used to process and display the results of the projected datasets of rainfall, T<sub>max</sub> and T<sub>min</sub> for the HS, NF and FF, respectively. The results show that the observed T<sub>max</sub> increased by the rates of 0.035℃ yr<sup>-</sup><sup>1</sup> and 0.0169℃ yr<sup>-</sup><sup>1</sup>, while the T<sub>min</sub> was increased by a rate of 0.064℃ yr<sup>-</sup><sup>1</sup> and 0.104℃ yr<sup>-</sup><sup>1</sup> for Unguja and Pemba, respectively. The temporal distribution of wetness and dryness indices showed a climate shift from near normal to moderate wet during 2005 at Zanzibar Airport, while normal to moderately dry conditions, were observed in Pemba at Matangatuani. The decadal rainfall variability and distributions revealed higher rainfall intensity with an increasing trend and good spatial distribution in D3 from March to May (MAM) and October to December (OND). The projected results for T<sub>max</sub> during MAM and OND depicted higher values ranging from 1.7℃ - 1.8℃ to 1.9℃ - 2.0℃ and 1.5℃ to 2.0℃ in FF compared to NF under both RCPs. Also, higher T<sub>min</sub> values of 1.12℃ - 1.16℃ was projected in FF for MAM and OND under both RCPs. Besides, the rainfall projection generally revealed increased rainfall intensity in the range of 0 - 25 mm for Pemba and declined rainfall in the range of 25 - 50 mm in Unguja under both RCPs in perspectives of both NF and FF. Conclusively the study has shown that the undergoing climate change has posed a significant impact on both rainfall and temperature spatial and temporal distributions in Zanzibar (Unguja and Pemba), with Unguja being projected to have higher rainfall deficits while increasing rainfall strengths in Pemba. Thus, the study calls for more studies and formulation of effective adaptation, strategies and resilience mechanisms to combat the projected climate change impacts especially in the agricultural sector, water and food security. 展开更多
关键词 Climate Change Climate variability Spatial and Temporal Distribution Temperature RAINFALL CORDEX
下载PDF
Multi-decadal Changes of the Impact of El Niño Events on Tibetan Plateau Summer Precipitation
9
作者 Weinan Jiang Ning Cao +1 位作者 Riga Aze Jianjun Xu 《Journal of Atmospheric Science Research》 2024年第1期90-105,共16页
Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-So... Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate. 展开更多
关键词 Tibetan plateau Summer precipitation ENSO Multi-decadal changes Climate variability
下载PDF
Seasonal Dynamic of the Fall Armyworm, Spodoptera frugiperda (J.E Smith, 1797) (Lepidoptera: Noctuidae) on Maize Crop in the Sub-Sudanese Zone of Côte d’Ivoire
10
作者 Stéphanie Manuela Klamansoni Akissi Konan Laya Kansaye Nondenot Roi Louis Aboua 《Advances in Entomology》 2024年第2期78-92,共15页
In Côte d’Ivoire, maize (Zea mays L) is the second most cultivated cereal after rice. Since the first report of Spodoptera frugiperda in Côte d’Ivoire, maize production in the northern regions has been aff... In Côte d’Ivoire, maize (Zea mays L) is the second most cultivated cereal after rice. Since the first report of Spodoptera frugiperda in Côte d’Ivoire, maize production in the northern regions has been affected resulting in maize production losses. This study aims to study the seasonal dynamic of Spodoptera frugiperda in maize fields in the sub-Sudanese zone, main zone of maize cultivation in Côte d’Ivoire. The study was done using pheromone trap lures. The results revealed a variation in the moth population at various growth stages during rainy and dry seasons. Notably, the highest numbers of moths were consistently trapped during the whorl stage with counts ranging from 131 ± 35.7 during the rainy season to 70.6 ± 15.01 in the dry season. The lowest numbers of moths were observed during pod maturation, with counts ranging from 30.3 ± 13.05 during the rainy season to 11.7 ± 3.05 in the dry season. Between the 7<sup>th</sup> and 21<sup>st</sup> days after sowing, the count of moths displayed a consistent upward trajectory, reaching 188 moths during the rainy season. The damages were particularly observed at whorl stage. The relationship between the numbers of moths and some climatic variables revealed a negative correlation between moths numbers and rainfall (r= −0.44) and relative humidity (r= −0.684). In contrast, there were positive relationships with temperature (r = 0.16), highlighting the significant impact of temperature changes on moth population dynamics. The research highlights the need for integrated pest management strategies that consider climatic factors and growth stages of maize to mitigate the impact of this insect pest on maize. 展开更多
关键词 Spodoptera frugiperda MOTHS climatic Variables Zea mays
下载PDF
Variability and Variation Characteristics of Climate in Northern Winter Wheat Zone during 1961-2004
11
作者 NING Jin-hua1,SHEN Shuang-he2 1.Meteorological Training Center of Hunan Meteorological Bureau,Changsha 410125,China 2.Department of Applied Meteorological Science,Nanjing University of Information Science & Technology,Nanjing 210044,China 《Meteorological and Environmental Research》 CAS 2011年第7期30-34,共5页
[Objective] The research aimed to study the variability and variation characteristics of climate in northern winter wheat zone during 1961-2004.[Method] Based on the meteorological data (temperature,precipitation and ... [Objective] The research aimed to study the variability and variation characteristics of climate in northern winter wheat zone during 1961-2004.[Method] Based on the meteorological data (temperature,precipitation and sunshine) of 55 meteorological stations in northern winter wheat zone during 1961-2004 and the yield data of winter wheat,by using the linear regression,correlated coefficient and climatic tendency rate,the spatial and temporal evolution characteristics of agricultural climatic resources (sunshine hours,temperature and precipitation) in northern winter wheat zone were analyzed.[Result] The annual average temperature,precipitation and sunshine hours in northern winter wheat zone during 1961-2004 all presented certain zonal distribution in the space.The precipitation and temperature gradually decreased from south to north.The sunshine hours gradually increased from south to north.The annual average temperature overall presented rise trend in northern winter wheat zone in 44 years,but the rise rate had difference in the different areas.The rise of annual average temperature in the high-latitude zone was more obvious than that in the low-latitude zone.The annual rainfall overall presented decrease trend,and the tendency rate of annual precipitation had significant difference in the different areas.The decrease rates of rainfalls in the central and western areas were bigger than that in other areas.The annual sunshine hours overall presented decline trend.In most areas,the tendency rate of annual sunshine hours was negative.But there was certain difference in the different areas.The zones where the decrease amplitude was smaller scattered in the west,and included central Shaanxi,south of Shanxi and some areas in southeast of Shandong.The decrease amplitudes were bigger in south of Henan,northwest of Shandong and south of Hebei.[Conclusion] The research provided theoretical basis for understanding the historical evolution of climate in northern winter wheat zone. 展开更多
关键词 climatic variability Variation characteristic Northern winter wheat zone China
下载PDF
An Overview of Dry-wet Climate Variability among Monsoon-Westerly Regions and the Monsoon Northernmost Marginal Active Zone in China 被引量:23
12
作者 钱维宏 丁婷 +2 位作者 胡豪然 林祥 秦爱民 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期630-641,共12页
Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that... Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4-5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed. 展开更多
关键词 dry-wet climate variability monsoon region westerly region monsoon active zone China
下载PDF
Interannual Variability of the Normalized Difference Vegetation Index on the Tibetan Plateau and Its Relationship with Climate Change 被引量:23
13
作者 周定文 范广洲 +3 位作者 黄荣辉 方之芳 刘雅勤 李洪权 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期474-484,共11页
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly... The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability. 展开更多
关键词 Tibetan Plateau normalized difference vegetation index (NDVI) ECOSYSTEM climate change interannual variability
下载PDF
Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability 被引量:9
14
作者 Zhicai Luo Chaolong Yao +1 位作者 Qiong Li Zhengkai Huang 《Geodesy and Geodynamics》 2016年第3期171-179,共9页
Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 200... Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB. 展开更多
关键词 GRACE Terrestrial water storage Pearl River Basin DROUGHT Climate variability
下载PDF
Major Modes of Short-Term Climate Variability in the Newly Developed NUIST Earth System Model(NESM) 被引量:10
15
作者 CAO Jian Bin WANG +5 位作者 Baoqiang XIANG Juan LI WU Tianjie Xiouhua FU WU Liguang MIN Jinzhong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期585-600,共16页
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nu... A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO. 展开更多
关键词 coupled climate model earth system model climate variability
下载PDF
The impact of climatic variables on the population dynamics of the main malaria vector, Anopheles stephensi Liston(Diptera: Culicidae), in southern Iran 被引量:1
16
作者 Madineh Abbasi Abbas Rahimi Foroushani +3 位作者 Tohid Jafari-Koshki Kamran Pakdad Hassan Vatandoost Ahmad Ali Hanafi-Bojd 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2020年第10期448-455,共8页
Objective:To determine the significance of temperature,rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran.Methods:Data on the monthly abundance of Anopheles stephensi larvae and ad... Objective:To determine the significance of temperature,rainfall and humidity in the seasonal abundance of Anopheles stephensi in southern Iran.Methods:Data on the monthly abundance of Anopheles stephensi larvae and adults were gathered from earlier studies conducted between 2002 and 2019 in malaria prone areas of southeastern Iran.Climatic data for the studied counties were obtained from climatology stations.Generalized estimating equations method was used for cluster correlation of data for each study site in different years.Results:A significant relationship was found between monthly density of adult and larvae of Anopheles stephensi and precipitation,max temperature and mean temperature,both with simple and multiple generalized estimating equations analysis(P<0.05).But when analysis was done with one month lag,only relationship between monthly density of adults and larvae of Anopheles stephensi and max temperature was significant(P<0.05).Conclusions:This study provides a basis for developing multivariate time series models,which can be used to develop improved appropriate epidemic prediction systems for these areas.Long-term entomological study in the studied sites by expert teams is recommended to compare the abundance of malaria vectors in the different areas and their association with climatic variables. 展开更多
关键词 Anopheles stephensi climatic variables Monthly activity Iran
下载PDF
Impacts of climatic and marine environmental variations on the spatial distribution of Ommastrephes bartramii in the Northwest Pacific Ocean 被引量:6
17
作者 YU Wei CHEN Xinjun +2 位作者 YI Qian GAO Guoping CHEN Yong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期108-116,共9页
Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in... Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation(PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995-2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers(LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature(SST)and sea surface height(SSH) on the fishing ground, whereas the mixed layer depth(MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH,resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management. 展开更多
关键词 Ommastrephes bartramii fishing ground gravitational centers climate change oceanographic variables Northwest Pacific Ocean
下载PDF
The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model  被引量:2
18
作者 俞永强 郭裕福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第3期273-288,共16页
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with t... In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics. 展开更多
关键词 Interannual variability of climate Coupled ocean-atmosphere model
下载PDF
Impact of Climate Variability on Water Resources: The Case of Marc Delorme-Cnra Station, Southeast of Ivory Coast 被引量:1
19
作者 Charly Fernand Agoh Tacra Thierry Lekadou +5 位作者 Mahaman Bachir Saley Bi Trazié Jérémie Gala Jean Homian Danumah Pierre-Marie Janvier Coffi Zadjéhi Eric-Blanchard Koffi Bi Tié Albert Goula 《Journal of Water Resource and Protection》 2021年第9期726-749,共24页
This study aims to characterize the climatic variability in the South-East of Ivory Coast and to show its impact on the supply of water resources. To do this, statistical and hydrological methods were applied to clima... This study aims to characterize the climatic variability in the South-East of Ivory Coast and to show its impact on the supply of water resources. To do this, statistical and hydrological methods were applied to climatic data collected at the Marc DELORME Research Station of the CNRA. The statistical trend tests on this data revealed a significant decrease in precipitation and an increase in temperature, insolation and evaporation. Statistical break methods indicate a rainfall break in 1982 which marks a modification of the rainfall regime thus translating a drop in rainfall of 15%, a recession in the frequency of rainy days in general and in particular in rainfall heights between 10 and 30 mm and greater than 50 mm. This break is accompanied by a shortening of the rainy seasons, with average rainfall durations ranging from 54 days (short rainy season) to 104 days (great rainy season). Despite the disturbances in the different seasons of the year, the monthly rainfall regimes in the area have not changed. The assessment of the effects of drought on water resources using the Standardized Precipitation and Evapotranspiration Index (SPEI) for three-time scales (1 month, 3 months and 12 months) indicates a severe drought ranging from 3% to 7% over the period 1961 to 2018. However, despite the presence of this severe drought, the intensity of the drought was found to be moderate on all time scales. The Thorrnthwaite method was used to highlight the impacts of this climatic variability on the region’s water resources. The average annual recharge estimated at 402 mm, has been reduced to 153 mm during a deficit period, a decrease of about 62%. The average annual runoff, which was 294 mm, fells to 257 mm, a decrease of about 13%. This recorded decrease in the water infiltrated after the rainfall break (1983-2018), explains the heterogeneous decrease in the depth of the water table. 展开更多
关键词 Climate variability Drought Statistical Tests Water Resource Ivory Coast
下载PDF
Interannual Climate Variability Change during the Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium Simulations 被引量:4
20
作者 Kaiqing YANG Dabang JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第4期497-508,共12页
In this study, we analyzed numerical experiments undertaken by 10 climate models participating in PMIP3(Paleoclimate Modelling Intercomparison Project Phase 3) to examine the changes in interannual temperature varia... In this study, we analyzed numerical experiments undertaken by 10 climate models participating in PMIP3(Paleoclimate Modelling Intercomparison Project Phase 3) to examine the changes in interannual temperature variability and coefficient of variation(CV) of interannual precipitation in the warm period of the Medieval Climate Anomaly(MCA) and the cold period of the Little Ice Age(LIA). With respect to the past millennium period, the MCA temperature variability decreases by 2.0% on average over the globe, and most of the decreases occur in low latitudes. In the LIA, temperature variability increases by a global average of 0.6%, which occurs primarily in the high latitudes of Eurasia and the western Pacific. For the CV of interannual precipitation, regional-scale changes are more significant than changes at the global scale, with a pattern of increased(decreased) CV in the midlatitudes of Eurasia and the northwestern Pacific in the MCA(LIA). The CV change ranges from-7.0% to 4.3%(from -6.3% to 5.4%), with a global average of -0.5%(-0.07%) in the MCA(LIA).Also, the variability changes are considerably larger in December–January–February with respect to both temperature and precipitation. 展开更多
关键词 interannual variability last millennium Medieval Climate Anomaly Little Ice Age
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部